TY - GEN
T1 - Image-Based Rendering for Non-Diffuse Synthetic Scenes
AU - Lischinski, Dani
AU - Rappoport, Ari
PY - 1998
Y1 - 1998
N2 - Most current image-based rendering methods operate under the assumption that all of the visible surfaces in the scene are opaque ideal diffuse (Lambertian) reflectors. This paper is concerned with image-based rendering of non-diffuse synthetic scenes. We introduce a new family of image-based scene representations and describe corresponding image-based rendering algorithms that are capable of handling general synthetic scenes containing not only diffuse reflectors, but also specular and glossy objects. Our image-based representation is based on layereddepth images. It represents simultaneously and separately both view-independent scene information and view-dependent appearance information. The view-dependent information may be either extracted directly from our data-structures, or evaluated procedurally using an image-based analogue of ray tracing. We describe image-based rendering algorithms that recombine the two components together in a manner that produces a good approximation to the correct image from any viewing position. In addition to extending image-based rendering to non-diffuse synthetic scenes, our paper has an important methodological contribution: it places image-based rendering, light field rendering, and volume graphics in a common framework of discrete raster-based scene representations.
AB - Most current image-based rendering methods operate under the assumption that all of the visible surfaces in the scene are opaque ideal diffuse (Lambertian) reflectors. This paper is concerned with image-based rendering of non-diffuse synthetic scenes. We introduce a new family of image-based scene representations and describe corresponding image-based rendering algorithms that are capable of handling general synthetic scenes containing not only diffuse reflectors, but also specular and glossy objects. Our image-based representation is based on layereddepth images. It represents simultaneously and separately both view-independent scene information and view-dependent appearance information. The view-dependent information may be either extracted directly from our data-structures, or evaluated procedurally using an image-based analogue of ray tracing. We describe image-based rendering algorithms that recombine the two components together in a manner that produces a good approximation to the correct image from any viewing position. In addition to extending image-based rendering to non-diffuse synthetic scenes, our paper has an important methodological contribution: it places image-based rendering, light field rendering, and volume graphics in a common framework of discrete raster-based scene representations.
U2 - 10.1007/978-3-7091-6453-2_28
DO - 10.1007/978-3-7091-6453-2_28
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
SN - 978-3-211-83213-4
T3 - Eurographics
SP - 301
EP - 314
BT - Rendering Techniques ’98
ER -