In-gap States and Carrier Recombination in Quasi-2D Perovskite Films

Bat El Cohen, Ron Alafi, Jonathan Beinglass, Adva Shpatz Dayan, Oren Goldberg, Shachar Gold, Isaac Balberg, Leeor Kronik, Lioz Etgar, Oded Millo, Doron Azulay*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

In-gap states and their effect on recombination rates in quasi-2D lead–iodide-based perovskites, intercalated with various spacer molecules, are studied using a combination of scanning tunneling spectroscopy and temperature-dependent photoconductivity measurements. The results are further analyzed by a Shockley–Read–Hall model. Indications for shallow in-gap states, positioned at about 0.15–0.2 eV below the bottom of the conduction band, are found. These states are identified as dominating the recombination route of photogenerated carriers in these systems, with a relatively large capture coefficient of about 10−5–10−6 cm3 s−1 at room temperature. First-principles calculations based on density functional theory imply that these states are not an intrinsic effect of the inclusion of the spacer molecules, but rather one that arises from chemical defect formation or structural deformation of the perovskite layers. The results suggest that further improvement of the performance of solar cells that are based on quasi-2D perovskites requires, along with enhancing carrier mobility, efforts to suppress the concentration of these detrimental defect states.

Original languageAmerican English
JournalSolar RRL
DOIs
StateAccepted/In press - 2023

Bibliographical note

Publisher Copyright:
© 2023 The Authors. Solar RRL published by Wiley-VCH GmbH.

Keywords

  • density functional theory calculations
  • halide perovskites
  • photoconductivity
  • scanning tunneling spectroscopy

Fingerprint

Dive into the research topics of 'In-gap States and Carrier Recombination in Quasi-2D Perovskite Films'. Together they form a unique fingerprint.

Cite this