TY - JOUR
T1 - In vitro evaluations of cytotoxicity of eight antidiabetic medicinal plants and their effect on GLUT4 translocation
AU - Kadan, Sleman
AU - Saad, Bashar
AU - Sasson, Yoel
AU - Zaid, Hilal
PY - 2013
Y1 - 2013
N2 - Despite the enormous achievements in conventional medicine, herbal-based medicines are still a common practice for the treatment of diabetes. Trigonella foenum-graecum, Atriplex halimus, Olea europaea, Urtica dioica, Allium sativum, Allium cepa, Nigella sativa, and Cinnamomum cassia are strongly recommended in the Greco-Arab and Islamic medicine for the treatment and prevention of diabetes. Cytotoxicity (MTT and LDH assays) of the plant extracts was assessed using cells from the liver hepatocellular carcinoma cell line (HepG2) and cells from the rat L6 muscle cell line. The effects of the plant extracts (50% ethanol in water) on glucose transporter-4 (GLUT4) translocation to the plasma membrane was tested in an ELISA test on L6-GLUT4myc cells. Results obtained indicate that Cinnamomon cassia is cytotoxic at concentrations higher than 100 g/mL, whereas all other tested extracts exhibited cytotoxic effects at concentrations higher than 500 g/mL. Exposing L6-GLUT4myc muscle cell to extracts from Trigonella foenum-graecum, Urtica dioica, Atriplex halimus, and Cinnamomum verum led to a significant gain in GLUT4 on their plasma membranes at noncytotoxic concentrations as measured with MTT assay and the LDH leakage assay. These findings indicate that the observed anti-diabetic properties of these plants are mediated, at least partially, through regulating GLUT4 translocation.
AB - Despite the enormous achievements in conventional medicine, herbal-based medicines are still a common practice for the treatment of diabetes. Trigonella foenum-graecum, Atriplex halimus, Olea europaea, Urtica dioica, Allium sativum, Allium cepa, Nigella sativa, and Cinnamomum cassia are strongly recommended in the Greco-Arab and Islamic medicine for the treatment and prevention of diabetes. Cytotoxicity (MTT and LDH assays) of the plant extracts was assessed using cells from the liver hepatocellular carcinoma cell line (HepG2) and cells from the rat L6 muscle cell line. The effects of the plant extracts (50% ethanol in water) on glucose transporter-4 (GLUT4) translocation to the plasma membrane was tested in an ELISA test on L6-GLUT4myc cells. Results obtained indicate that Cinnamomon cassia is cytotoxic at concentrations higher than 100 g/mL, whereas all other tested extracts exhibited cytotoxic effects at concentrations higher than 500 g/mL. Exposing L6-GLUT4myc muscle cell to extracts from Trigonella foenum-graecum, Urtica dioica, Atriplex halimus, and Cinnamomum verum led to a significant gain in GLUT4 on their plasma membranes at noncytotoxic concentrations as measured with MTT assay and the LDH leakage assay. These findings indicate that the observed anti-diabetic properties of these plants are mediated, at least partially, through regulating GLUT4 translocation.
UR - http://www.scopus.com/inward/record.url?scp=84876523391&partnerID=8YFLogxK
U2 - 10.1155/2013/549345
DO - 10.1155/2013/549345
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84876523391
SN - 1741-427X
VL - 2013
JO - Evidence-based Complementary and Alternative Medicine
JF - Evidence-based Complementary and Alternative Medicine
M1 - 549345
ER -