TY - JOUR
T1 - Incorporation of coenzyme q10 into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence
AU - Gendelman, Mirit
AU - Roth, Zvi
PY - 2012/11/1
Y1 - 2012/11/1
N2 - Environmental stress-induced alterations in oocyte mitochondria are suggested to deleteriously affect developmental competence of the ovarian pool of oocytes. We examined the association between seasonal effects on oocyte developmental competence and mitochondrial distribution, polarization, mitochondrial DNA (mtDNA) content, and RNA expression, and whether the incorporation of coenzyme Q10 (CoQ10) might improve these effects. Bovine oocytes were collected during the summer (June-August), fall (September-November), and winter (December-May), matured in vitro with or without 50 lM CoQ10, fertilized, and cultured for 8 days. The proportion of developed blastocysts was highest in the winter, intermediate in the fall, and lowest in the summer. Matured oocytes were classified into categories I-IV according to their mitochondrial distribution pattern (MitoTracker green). The proportion of highand low-polarized mitochondria (JC-1 assay) differed between oocyte categories but was not affected by season. On the other hand, oocyte distribution into categories differed between seasons and was affected by CoQ10, with an increased proportion of category I oocytes in the fall. Oocyte mtDNA did not differ between seasons, but expression of mitochondrionassociated genes involved in the respiratory chain (ND2, SDHD, CYTB, COXII, ATP5B, and TFAM) did. Coenzyme Q10 increased the expression of CYTB, COXII, and ATP5B and the proportions of blastocysts developed in the fall. In summary, season-induced alterations in mitochondrial functions might explain, in part, the reduced oocyte developmental competence. It seems that in the fall, under modest harm, CoQ10 incorporation can alleviate these deleterious effects somewhat.
AB - Environmental stress-induced alterations in oocyte mitochondria are suggested to deleteriously affect developmental competence of the ovarian pool of oocytes. We examined the association between seasonal effects on oocyte developmental competence and mitochondrial distribution, polarization, mitochondrial DNA (mtDNA) content, and RNA expression, and whether the incorporation of coenzyme Q10 (CoQ10) might improve these effects. Bovine oocytes were collected during the summer (June-August), fall (September-November), and winter (December-May), matured in vitro with or without 50 lM CoQ10, fertilized, and cultured for 8 days. The proportion of developed blastocysts was highest in the winter, intermediate in the fall, and lowest in the summer. Matured oocytes were classified into categories I-IV according to their mitochondrial distribution pattern (MitoTracker green). The proportion of highand low-polarized mitochondria (JC-1 assay) differed between oocyte categories but was not affected by season. On the other hand, oocyte distribution into categories differed between seasons and was affected by CoQ10, with an increased proportion of category I oocytes in the fall. Oocyte mtDNA did not differ between seasons, but expression of mitochondrionassociated genes involved in the respiratory chain (ND2, SDHD, CYTB, COXII, ATP5B, and TFAM) did. Coenzyme Q10 increased the expression of CYTB, COXII, and ATP5B and the proportions of blastocysts developed in the fall. In summary, season-induced alterations in mitochondrial functions might explain, in part, the reduced oocyte developmental competence. It seems that in the fall, under modest harm, CoQ10 incorporation can alleviate these deleterious effects somewhat.
KW - Environment
KW - Mitochondria
KW - Oocyte competence
KW - Stress
UR - http://www.scopus.com/inward/record.url?scp=84869414327&partnerID=8YFLogxK
U2 - 10.1095/biolreprod.112.101881
DO - 10.1095/biolreprod.112.101881
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 23018185
AN - SCOPUS:84869414327
SN - 0006-3363
VL - 87
JO - Biology of Reproduction
JF - Biology of Reproduction
IS - 5
M1 - Article 118
ER -