Incorporation of curcumin in liquid nanodomains embedded into polymeric films for dermal application

Eva Abramov*, Nissim Garti

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Liquid nanovehicles are gaining interest in drug delivery because of the high solubilization capacity of bioactives at their interface and enhanced permeation of compounds across physiological membranes. However, the dermal application of liquid nanovehicles is still limited. The goal of this research is to develop a dermal delivery system based on embedding of liquid nanovehicles into polymeric films, which will allow controlled release of the nanodroplets with the solubilized drug. In this study, we describe the incorporation of empty and curcumin-loaded nanodomains into polymeric film. The novel technology results in formation of homogeneous, transparent and elastic films with high (up to 85 wt%) loading capacity of nanodomains. The fundamental structural characterizations show that nanodomain structures embedded in the dry film are spontaneously reformed during the dermal application with similar droplets size of 10 nm. Ex-vivo release studies were performed on Franz diffusion cells and demonstrated a significant permeation of curcumin through the pig skin. This novel film technology can serve as a “solid platform reservoir” for liquid nanovehicles which enables controlled release of nanodroplets with solubilized bioactive.

Original languageEnglish
Article number111468
JournalColloids and Surfaces B: Biointerfaces
Volume198
DOIs
StatePublished - Feb 2021

Bibliographical note

Publisher Copyright:
© 2020 Elsevier B.V.

Keywords

  • Biopolymeric film
  • Curcumin
  • Dermal permeation
  • Drug delivery
  • Nanodomains
  • Nanovehicles

Fingerprint

Dive into the research topics of 'Incorporation of curcumin in liquid nanodomains embedded into polymeric films for dermal application'. Together they form a unique fingerprint.

Cite this