TY - JOUR
T1 - Increased Neuronal α-Synuclein Pathology Associates with Its Accumulation in Oligodendrocytes in Mice Modeling α-Synucleinopathies
AU - Kisos, Haya
AU - Pukaß, Katharina
AU - Ben-Hur, Tamir
AU - Richter-Landsberg, Christiane
AU - Sharon, Ronit
PY - 2012/10/15
Y1 - 2012/10/15
N2 - Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by striatonigral degeneration and olivo-pontocerebellar atrophy. The histopathological hallmark of MSA is glial cytoplasmic inclusions (GCI) within oligodendrocytes, accompanied by neuronal degeneration. MSA is a synucleinopathy, and α-Synuclein (α-Syn) is the major protein constituent of the GCI. It is unclear how the neuronal α-Syn protein accumulates in oligodendrocytes. We tested the hypothesis that oligodendrocytes can take up neuronal-secreted α-Syn as part of the pathogenic mechanisms leading to MSA. We report that increases in the degree of α-Syn soluble oligomers or intracellular α-Syn levels, enhance its secretion from cultured MN9D dopaminergic cells, stably expressing the protein. In accord, we show that primary oligodendrocytes from rat brain and oligodendroglial cell lines take-up neuronal-secreted or exogenously added α-Syn from their conditioning medium. This uptake is concentration-, time-, and clathrin-dependent. Utilizing the demonstrated effect of polyunsaturated fatty acids (PUFA) to enhance α-Syn neuropathology, we show an in vivo effect for brain docosahexaenoic acid (DHA) levels on α-Syn localization to oligodendrocytes in brains of a mouse model for synucleinopathies, expressing human A53T α-Syn cDNA under the PrP promoter. Hence, pathogenic mechanisms leading to elevated levels of α-Syn in neurons underlie neuronal secretion and subsequent uptake of α-Syn by oligodendrocytes in MSA.
AB - Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by striatonigral degeneration and olivo-pontocerebellar atrophy. The histopathological hallmark of MSA is glial cytoplasmic inclusions (GCI) within oligodendrocytes, accompanied by neuronal degeneration. MSA is a synucleinopathy, and α-Synuclein (α-Syn) is the major protein constituent of the GCI. It is unclear how the neuronal α-Syn protein accumulates in oligodendrocytes. We tested the hypothesis that oligodendrocytes can take up neuronal-secreted α-Syn as part of the pathogenic mechanisms leading to MSA. We report that increases in the degree of α-Syn soluble oligomers or intracellular α-Syn levels, enhance its secretion from cultured MN9D dopaminergic cells, stably expressing the protein. In accord, we show that primary oligodendrocytes from rat brain and oligodendroglial cell lines take-up neuronal-secreted or exogenously added α-Syn from their conditioning medium. This uptake is concentration-, time-, and clathrin-dependent. Utilizing the demonstrated effect of polyunsaturated fatty acids (PUFA) to enhance α-Syn neuropathology, we show an in vivo effect for brain docosahexaenoic acid (DHA) levels on α-Syn localization to oligodendrocytes in brains of a mouse model for synucleinopathies, expressing human A53T α-Syn cDNA under the PrP promoter. Hence, pathogenic mechanisms leading to elevated levels of α-Syn in neurons underlie neuronal secretion and subsequent uptake of α-Syn by oligodendrocytes in MSA.
UR - http://www.scopus.com/inward/record.url?scp=84867498658&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0046817
DO - 10.1371/journal.pone.0046817
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 23077527
AN - SCOPUS:84867498658
SN - 1932-6203
VL - 7
JO - PLoS ONE
JF - PLoS ONE
IS - 10
M1 - e46817
ER -