TY - JOUR
T1 - Influence of lipid composition on the thermotropic behavior and size distribution of mixed cationic liposomes
AU - Barenholz, Yechezkel
AU - Bombelli, Cecilia
AU - Bonicelli, Maria Grazia
AU - Profio, Pietro di
AU - Giansanti, Luisa
AU - Mancini, Giovanna
AU - Pascale, Fabrizio
PY - 2011/4/1
Y1 - 2011/4/1
N2 - Cationic liposomes are studied mainly as nonviral nucleic acid delivery systems and to a lesser extent as carriers/adjuvants of vaccines and as low-molecular-weight drug carriers. It is well established that the performance and the biological activity of liposomes in general are strongly related to their physicochemical properties. We investigated the thermotropic behavior and the size distribution of mixed cationic liposomes formulated with different percentages of 1,2 dimyristoyl-sn-glycero-3-phosphatidylcholine and one of four cationic amphiphiles characterized by a pyrrolidinium headgroup with the aim of achieving a better understanding of how the molecular structure of the cationic amphiphile and its mole percentage affect the physicochemical properties of the liposomes. Multilamellar vesicles and large unilamellar vesicles were studied by differential scanning calorimetry and turbidity, respectively, to characterize the thermotropic behavior and lipid phase, whereas dynamic light scattering was used to determine size distribution. This study shows that subtle modifications in the cationic amphiphile's molecular structure and in liposome composition may have dramatic effects on the organization of the liposome bilayer and hence on the morphological and physicochemical features of the liposomes, thus being highly relevant to the biological features investigated previously.
AB - Cationic liposomes are studied mainly as nonviral nucleic acid delivery systems and to a lesser extent as carriers/adjuvants of vaccines and as low-molecular-weight drug carriers. It is well established that the performance and the biological activity of liposomes in general are strongly related to their physicochemical properties. We investigated the thermotropic behavior and the size distribution of mixed cationic liposomes formulated with different percentages of 1,2 dimyristoyl-sn-glycero-3-phosphatidylcholine and one of four cationic amphiphiles characterized by a pyrrolidinium headgroup with the aim of achieving a better understanding of how the molecular structure of the cationic amphiphile and its mole percentage affect the physicochemical properties of the liposomes. Multilamellar vesicles and large unilamellar vesicles were studied by differential scanning calorimetry and turbidity, respectively, to characterize the thermotropic behavior and lipid phase, whereas dynamic light scattering was used to determine size distribution. This study shows that subtle modifications in the cationic amphiphile's molecular structure and in liposome composition may have dramatic effects on the organization of the liposome bilayer and hence on the morphological and physicochemical features of the liposomes, thus being highly relevant to the biological features investigated previously.
KW - Cationic liposomes
KW - Cooperative unit
KW - Differential scanning calorimetry
KW - Exotherm
KW - Phase separation
KW - Turbidity measurements
UR - http://www.scopus.com/inward/record.url?scp=79551681498&partnerID=8YFLogxK
U2 - 10.1016/j.jcis.2010.11.062
DO - 10.1016/j.jcis.2010.11.062
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 21256506
AN - SCOPUS:79551681498
SN - 0021-9797
VL - 356
SP - 46
EP - 53
JO - Journal of Colloid and Interface Science
JF - Journal of Colloid and Interface Science
IS - 1
ER -