Inhibition of proliferation of mouse T cell-dependent bone marrow-derived mast cells by rat serum does not change their unique phenotype

R. L. Stevens, W. F. Bloes, D. C. Seldin, E. Razin, H. R. Katz, K. F. Austen

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Both mouse and rat sera have been found to inhibit proliferation in vitro of interleukin 3-dependent chondroitin sulfate E proteoglycan-containing mouse bone marrow-derived mast cells (BMMC), as assessed by quantitation of 3H-labeled thymidine incorporation into DNA, cell cycle analysis, and cell number. Rat serum (9%) inhibited 3H-labeled thymidine incorporation within 60 min of exposure in a culture medium composed of 1% fetal calf serum (FCS) and 16% concanavalin A splenocyte-conditioned medium. The anti-proliferative effect of rat serum did not alter cell viability for 17 hr of subsequent culture, was dose related, with a maximal effect at 7% rat serum, and was reversible. Cytofluorographic analysis of relative DNA content per cell revealed that the proportion of cells in the S + G2 + M phases of the cell cycle was decreased in cells treated with 9% rat serum compared with cells cultured in either 1% or 10% FCS. These rat serum-treated BMMC exhibited no change in plasma membrane antigen phenotype as assessed by 15 monoclonal antibodies, and continued to synthesize chondroitin sulfate E proteoglycan. When sensitized with monoclonal IgE antibody, washed, and challenged with specific antigen, the rat serum-treated BMMC released the preformed secretory granule-associated mediators β-hexosaminidase and histamine, and the newly generated lipid mediators leukotriene C4 (LTC4) and leukotriene B4 (LTB4) in amounts comparable to BMMC cultured in 10% FCS. Thus, the unique cell surface phenotype, the presence of chondroitin sulfate E proteoglycan rather than heparin proteoglycan, and the generation of LTC4 and LTB4 in a ratio of approximately 6:1 upon perturbation of the IgE receptor are distinctive characteristics of the interleukin 3-dependent mouse BMMC subclass, and not a functional consequence of the rapid proliferation of the cell.

Original languageEnglish
Pages (from-to)2674-2680
Number of pages7
JournalJournal of Immunology
Volume133
Issue number5
StatePublished - 1984

Fingerprint

Dive into the research topics of 'Inhibition of proliferation of mouse T cell-dependent bone marrow-derived mast cells by rat serum does not change their unique phenotype'. Together they form a unique fingerprint.

Cite this