Inhibition of purified soluble guanylyl cyclase by copper ions

Astrid Schrammel, Doris Koesling, Antonius C.F. Gorren, Mordechai Chevion, Kurt Schmidt, Bernd Mayer*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

The aim of the present study was to investigate the effect of Cu(II) ions on soluble guanylyl cyclase [GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2; sGC] and to test for a possible physiological role of this putative cofactor of the enzyme [Gerzer et al., FEBS Lett. 132: 71-74, 1981]. CuSO4 was found to inhibit NO-stimulated sGC with an IC50 of 2.2 ± 0.3 μM. Virtually complete inhibition of guanosine-3',5'-cyclic monophosphate (cGMP) formation was observed at 10 μM of the copper salt. Presence of CuSO4 (2 μM) did not significantly affect the potency of 2,2-diethyl-1-nitroso-oxyhydrazine (DEA/NO) but did markedly decrease maximal cyclase activity from 3.71 ± 0.2 μmol cGMP x mg-1 x min-1 to 1.75 ± 0.2 μmol cGMP x mg-1 x min-1. The nonstimulated enzyme was also sensitive to CuSO4 (IC50 of 6.2 ± 1.2 μM). Addition of glutathione, which potently complexes Cu(I) ions, induced a pronounced rightward shift of the concentration-response curves for inhibition by CuSO4 of both DEA/NO-stimulated and nonstimulated guanylyl cyclase. The inhibitory effect of CuSO4 was completely antagonized by the specific Cu(I) chelator neocuproine, with a half-maximal effect at 5.9 ± 0.2 μM. In contrast, the Cu(II) chelator cuprizone and several thiols, which do not form stable Cu(I) complexes, were far less protective. Our results suggest that inhibition of soluble guanylyl cyclase by CuSO4 is unrelated to heme-mediated enzyme stimulation and may arise from the reversible high affinity binding of Cu(I) ions to a site of the protein that is critically involved in enzyme catalysis.

Original languageEnglish
Pages (from-to)1041-1045
Number of pages5
JournalBiochemical Pharmacology
Volume52
Issue number7
DOIs
StatePublished - 11 Oct 1996

Keywords

  • Cu(I) ions
  • CuSO-induced enzyme inhibition
  • cuprizone
  • glutathione
  • neocuproine
  • soluble guanylyl cyclase

Fingerprint

Dive into the research topics of 'Inhibition of purified soluble guanylyl cyclase by copper ions'. Together they form a unique fingerprint.

Cite this