Inside jokes: Identifying humorous cartoon captions

Dafna Shahaf, Eric Horvitz, Robert Mankoff

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

49 Scopus citations

Abstract

Humor is an integral aspect of the human experience. Motivated by the prospect of creating computational models of humor, we study the influence of the language of cartoon captions on the perceived humorousness of the cartoons. Our studies are based on a large corpus of crowdsourced cartoon captions that were submitted to a contest hosted by the New Yorker. Having access to thousands of captions submitted for the same image allows us to analyze the breadth of responses of people to the same visual stimulus. We first describe how we acquire judgments about the humorousness of different captions. Then, we detail the construction of a corpus where captions deemed funnier are paired with less-funny captions for the same cartoon. We analyze the caption pairs and find significant differences between the funnier and less-funny captions. Next, we build a classifier to identify funnier captions automatically. Given two captions and a cartoon, our classifier picks the funnier one 69% of the time for captions hinging on the same joke, and 64% of the time for any pair of captions. Finally, we use the classifier to find the best captions and study how its predictions could be used to significantly reduce the load on the cartoon contest's judges.

Original languageAmerican English
Title of host publicationKDD 2015 - Proceedings of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages1065-1074
Number of pages10
ISBN (Electronic)9781450336642
DOIs
StatePublished - 10 Aug 2015
Externally publishedYes
Event21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2015 - Sydney, Australia
Duration: 10 Aug 201513 Aug 2015

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Volume2015-August

Conference

Conference21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2015
Country/TerritoryAustralia
CitySydney
Period10/08/1513/08/15

Bibliographical note

Publisher Copyright:
© 2015 ACM.

Keywords

  • Cartoon
  • Cartoon caption
  • Humor

Fingerprint

Dive into the research topics of 'Inside jokes: Identifying humorous cartoon captions'. Together they form a unique fingerprint.

Cite this