Abstract
Previous models for the assessment of commitment towards a predicate in a sentence (also known as factuality prediction) were trained and tested against a specific annotated dataset, subsequently limiting the generality of their results. In this work we propose an intuitive method for mapping three previously annotated corpora onto a single factuality scale, thereby enabling models to be tested across these corpora. In addition, we design a novel model for factuality prediction by first extending a previous rule-based factuality prediction system and applying it over an abstraction of dependency trees, and then using the output of this system in a supervised classifier. We show that this model outperforms previous methods on all three datasets. We make both the unified factuality corpus and our new model publicly available.
Original language | English |
---|---|
Title of host publication | ACL 2017 - 55th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Short Papers) |
Publisher | Association for Computational Linguistics (ACL) |
Pages | 352-357 |
Number of pages | 6 |
ISBN (Electronic) | 9781945626760 |
DOIs | |
State | Published - 2017 |
Externally published | Yes |
Event | 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017 - Vancouver, Canada Duration: 30 Jul 2017 → 4 Aug 2017 |
Publication series
Name | ACL 2017 - 55th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers) |
---|---|
Volume | 2 |
Conference
Conference | 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017 |
---|---|
Country/Territory | Canada |
City | Vancouver |
Period | 30/07/17 → 4/08/17 |
Bibliographical note
Publisher Copyright:© 2017 Association for Computational Linguistics.