Integration of chemical catalysis with extractive fermentation to produce fuels

Pazhamalai Anbarasan, Zachary C. Baer, Sanil Sreekumar, Elad Gross, Joseph B. Binder, Harvey W. Blanch, Douglas S. Clark, F. Dean Toste*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

323 Scopus citations


Nearly one hundred years ago, the fermentative production of acetone by Clostridium acetobutylicum provided a crucial alternative source of this solvent for manufacture of the explosive cordite. Today there is a resurgence of interest in solventogenic Clostridium species to produce n-butanol and ethanol for use as renewable alternative transportation fuels. Acetone, a product of acetone-n-butanol-ethanol (ABE) fermentation, harbours a nucleophilic α-carbon, which is amenable to C-C bond formation with the electrophilic alcohols produced in ABE fermentation. This functionality can be used to form higher-molecular-mass hydrocarbons similar to those found in current jet and diesel fuels. Here we describe the integration of biological and chemocatalytic routes to convert ABE fermentation products efficiently into ketones by a palladium-catalysed alkylation. Tuning of the reaction conditions permits the production of either petrol or jet and diesel precursors. Glyceryl tributyrate was used for the in situ selective extraction of both acetone and alcohols to enable the simple integration of ABE fermentation and chemical catalysis, while reducing the energy demand of the overall process. This process provides a means to selectively produce petrol, jet and diesel blend stocks from lignocellulosic and cane sugars at yields near their theoretical maxima.

Original languageAmerican English
Pages (from-to)235-239
Number of pages5
Issue number7423
StatePublished - 8 Nov 2012
Externally publishedYes

Bibliographical note

Funding Information:
Acknowledgements We are grateful to H.-J. Song for performing initial experiments on the catalytic alkylation of acetone, and V. Mitchell for analysing acid pretreatment hydrolysate inhibitors present in Miscanthus giganteus. F.D.T. and E.G. acknowledge funding from the Director, Office of Science of the US Department of Energy, under contract no. DE-AC02-05CH11231. This work was funded by the Energy Biosciences Institute.


Dive into the research topics of 'Integration of chemical catalysis with extractive fermentation to produce fuels'. Together they form a unique fingerprint.

Cite this