Abstract
Recent technological advances enabled high-throughput collection of Small Angle X-ray Scattering (SAXS) profiles of biological macromolecules. Thus, computational methods for integrating SAXS profiles into structural modeling are needed more than ever. Here, we review specifically the use of SAXS profiles for the structural modeling of proteins, nucleic acids, and their complexes. First, the approaches for computing theoretical SAXS profiles from structures are presented. Second, computational methods for predicting protein structures, dynamics of proteins in solution, and assembly structures are covered. Third, we discuss the use of SAXS profiles in integrative structure modeling approaches that depend simultaneously on several data types.
Original language | English |
---|---|
Article number | 17 |
Journal | BMC Structural Biology |
Volume | 12 |
DOIs | |
State | Published - 2012 |
Externally published | Yes |
Bibliographical note
Funding Information:We thank Michal Hammel for providing the data for glucose isomerase, XLF-XRCC4, and Mre11-Rad50 examples in Figures 1, 3, and 5, respectively. We are grateful to Michal Hammel, Greg Hura, John Tainer, Tsutomu Matsui, Thomas Weiss, Hiro Tsuruta, and David Agard for many discussions about SAXS-based modeling. DSD has been funded by the Weizmann Institute Advancing Women in Science Postdoctoral Fellowship. Our work on SAXS-based modeling has been supported by NIH grants R01 GM083960, U54 RR022220, and U54 GM094662, and Rinat (Pfizer) Inc. The SIBYLS beamline at Lawrence Berkeley National Laboratory is supported by the DOE program Integrated Diffraction Analysis Technologies (IDAT). We are also grateful for computer hardware gifts from Ron Conway, Mike Homer, Intel, Hewlett-Packard, IBM, and NetApp.
Keywords
- Integrative modeling
- Macromolecular assembly
- Protein structure prediction
- Small Angle X-ray Scattering (SAXS)