TY - GEN
T1 - Interactive proofs of proximity
T2 - 45th Annual ACM Symposium on Theory of Computing, STOC 2013
AU - Rothblum, Guy N.
AU - Vadhan, Salil
AU - Wigderson, Avi
PY - 2013
Y1 - 2013
N2 - We study interactive proofs with sublinear-time verifiers. These proof systems can be used to ensure approximate correctness for the results of computations delegated to an untrusted server. Following the literature on property testing, we seek proof systems where with high probability the verifier accepts every input in the language, and rejects every input that is far from the language. The verifier's query complexity (and computation complexity), as well as the communication, should all be sublinear. We call such a proof system an Interactive Proof of Proximity (IPP). • On the positive side, our main result is that all languages in NC have Interactive Proofs of Proximity with roughly √ n query and communication and complexities, and polylog(n) communication rounds. This is achieved by identifying a natural language, membership in an affine subspace (for a structured class of subspaces), that is complete for constructing interactive proofs of proximity, and providing efficient protocols for it. In building an IPP for this complete language, we show a tradeoff between the query and communication complexity and the number of rounds. For example, we give a 2-round protocol with roughly n3/4 queries and communication. • On the negative side, we show that there exist natural languages in NC1, for which the sum of queries and communication in any constant-round interactive proof of proximity must be polynomially related to n. In particular, for any 2-round protocol, the sum of queries and communication must be at least Ω ̃ ( √ n). • Finally, we construct much better IPPs for specific functions, such as bipartiteness on random or wellmixing graphs, and the majority function. The query complexities of these protocols are provably better (by exponential or polynomial factors) than what is possible in the standard property testing model, i.e. without a prover.
AB - We study interactive proofs with sublinear-time verifiers. These proof systems can be used to ensure approximate correctness for the results of computations delegated to an untrusted server. Following the literature on property testing, we seek proof systems where with high probability the verifier accepts every input in the language, and rejects every input that is far from the language. The verifier's query complexity (and computation complexity), as well as the communication, should all be sublinear. We call such a proof system an Interactive Proof of Proximity (IPP). • On the positive side, our main result is that all languages in NC have Interactive Proofs of Proximity with roughly √ n query and communication and complexities, and polylog(n) communication rounds. This is achieved by identifying a natural language, membership in an affine subspace (for a structured class of subspaces), that is complete for constructing interactive proofs of proximity, and providing efficient protocols for it. In building an IPP for this complete language, we show a tradeoff between the query and communication complexity and the number of rounds. For example, we give a 2-round protocol with roughly n3/4 queries and communication. • On the negative side, we show that there exist natural languages in NC1, for which the sum of queries and communication in any constant-round interactive proof of proximity must be polynomially related to n. In particular, for any 2-round protocol, the sum of queries and communication must be at least Ω ̃ ( √ n). • Finally, we construct much better IPPs for specific functions, such as bipartiteness on random or wellmixing graphs, and the majority function. The query complexities of these protocols are provably better (by exponential or polynomial factors) than what is possible in the standard property testing model, i.e. without a prover.
KW - Interactive proofs
KW - Sublinear algorithms
UR - http://www.scopus.com/inward/record.url?scp=84879820967&partnerID=8YFLogxK
U2 - 10.1145/2488608.2488709
DO - 10.1145/2488608.2488709
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:84879820967
SN - 9781450320290
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 793
EP - 802
BT - STOC 2013 - Proceedings of the 2013 ACM Symposium on Theory of Computing
Y2 - 1 June 2013 through 4 June 2013
ER -