TY - JOUR
T1 - Interferon-Tau Exerts Direct Prosurvival and Antiapoptotic Actions in Luteinized Bovine Granulosa Cells
AU - Basavaraja, Raghavendra
AU - Madusanka, Senasige Thilina
AU - Drum, Jessica N.
AU - Shrestha, Ketan
AU - Farberov, Svetlana
AU - Wiltbank, Milo C.
AU - Sartori, Roberto
AU - Meidan, Rina
N1 - Publisher Copyright:
© 2019, The Author(s).
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Interferon-tau (IFNT), serves as a signal to maintain the corpus luteum (CL) during early pregnancy in domestic ruminants. We investigated here whether IFNT directly affects the function of luteinized bovine granulosa cells (LGCs), a model for large-luteal cells. Recombinant ovine IFNT (roIFNT) induced the IFN-stimulated genes (ISGs; MX2, ISG15, and OAS1Y). IFNT induced a rapid and transient (15–45 min) phosphorylation of STAT1, while total STAT1 protein was higher only after 24 h. IFNT treatment elevated viable LGCs numbers and decreased dead/apoptotic cell counts. Consistent with these effects on cell viability, IFNT upregulated cell survival proteins (MCL1, BCL-xL, and XIAP) and reduced the levels of gamma-H2AX, cleaved caspase-3, and thrombospondin-2 (THBS2) implicated in apoptosis. Notably, IFNT reversed the actions of THBS1 on cell viability, XIAP, and cleaved caspase-3. Furthermore, roIFNT stimulated proangiogenic genes, including FGF2, PDGFB, and PDGFAR. Corroborating the in vitro observations, CL collected from day 18 pregnant cows comprised higher ISGs together with elevated FGF2, PDGFB, and XIAP, compared with CL derived from day 18 cyclic cows. This study reveals that IFNT activates diverse pathways in LGCs, promoting survival and blood vessel stabilization while suppressing cell death signals. These mechanisms might contribute to CL maintenance during early pregnancy.
AB - Interferon-tau (IFNT), serves as a signal to maintain the corpus luteum (CL) during early pregnancy in domestic ruminants. We investigated here whether IFNT directly affects the function of luteinized bovine granulosa cells (LGCs), a model for large-luteal cells. Recombinant ovine IFNT (roIFNT) induced the IFN-stimulated genes (ISGs; MX2, ISG15, and OAS1Y). IFNT induced a rapid and transient (15–45 min) phosphorylation of STAT1, while total STAT1 protein was higher only after 24 h. IFNT treatment elevated viable LGCs numbers and decreased dead/apoptotic cell counts. Consistent with these effects on cell viability, IFNT upregulated cell survival proteins (MCL1, BCL-xL, and XIAP) and reduced the levels of gamma-H2AX, cleaved caspase-3, and thrombospondin-2 (THBS2) implicated in apoptosis. Notably, IFNT reversed the actions of THBS1 on cell viability, XIAP, and cleaved caspase-3. Furthermore, roIFNT stimulated proangiogenic genes, including FGF2, PDGFB, and PDGFAR. Corroborating the in vitro observations, CL collected from day 18 pregnant cows comprised higher ISGs together with elevated FGF2, PDGFB, and XIAP, compared with CL derived from day 18 cyclic cows. This study reveals that IFNT activates diverse pathways in LGCs, promoting survival and blood vessel stabilization while suppressing cell death signals. These mechanisms might contribute to CL maintenance during early pregnancy.
UR - http://www.scopus.com/inward/record.url?scp=85073144106&partnerID=8YFLogxK
U2 - 10.1038/s41598-019-51152-6
DO - 10.1038/s41598-019-51152-6
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 31605002
AN - SCOPUS:85073144106
SN - 2045-2322
VL - 9
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 14682
ER -