TY - JOUR
T1 - Intersections of Leray complexes and regularity of monomial ideals
AU - Kalai, Gil
AU - Meshulam, Roy
PY - 2006/10
Y1 - 2006/10
N2 - For a simplicial complex X and a field K, let over(h, ̃)i (X) = dim over(H, ̃)i (X ; K). It is shown that if X, Y are complexes on the same vertex set, then for k ≥ 0over(h, ̃)k - 1 (X ∩ Y) ≤ under(∑, σ ∈ Y) under(∑, i + j = k) over(h, ̃)i - 1 (X [σ]) ṡ over(h, ̃)j - 1 (lk (Y, σ)) . A simplicial complex X is d-Leray over K, if over(H, ̃)i (Y ; K) = 0 for all induced subcomplexes Y ⊂ X and i ≥ d. Let LK (X) denote the minimal d such that X is d-Leray over K. The above theorem implies that if X, Y are simplicial complexes on the same vertex set thenLK (X ∩ Y) ≤ LK (X) + LK (Y) . Reformulating this inequality in commutative algebra terms, we obtain the following result conjectured by Terai: If I, J are square-free monomial ideals in S = K [x1, ..., xn], thenreg (I + J) ≤ reg (I) + reg (J) - 1, where reg (I) denotes the Castelnuovo-Mumford regularity of I.
AB - For a simplicial complex X and a field K, let over(h, ̃)i (X) = dim over(H, ̃)i (X ; K). It is shown that if X, Y are complexes on the same vertex set, then for k ≥ 0over(h, ̃)k - 1 (X ∩ Y) ≤ under(∑, σ ∈ Y) under(∑, i + j = k) over(h, ̃)i - 1 (X [σ]) ṡ over(h, ̃)j - 1 (lk (Y, σ)) . A simplicial complex X is d-Leray over K, if over(H, ̃)i (Y ; K) = 0 for all induced subcomplexes Y ⊂ X and i ≥ d. Let LK (X) denote the minimal d such that X is d-Leray over K. The above theorem implies that if X, Y are simplicial complexes on the same vertex set thenLK (X ∩ Y) ≤ LK (X) + LK (Y) . Reformulating this inequality in commutative algebra terms, we obtain the following result conjectured by Terai: If I, J are square-free monomial ideals in S = K [x1, ..., xn], thenreg (I + J) ≤ reg (I) + reg (J) - 1, where reg (I) denotes the Castelnuovo-Mumford regularity of I.
KW - Monomial ideals
KW - Regularity
KW - Simplicial homology
UR - http://www.scopus.com/inward/record.url?scp=33746599545&partnerID=8YFLogxK
U2 - 10.1016/j.jcta.2006.01.005
DO - 10.1016/j.jcta.2006.01.005
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:33746599545
SN - 0097-3165
VL - 113
SP - 1586
EP - 1592
JO - Journal of Combinatorial Theory. Series A
JF - Journal of Combinatorial Theory. Series A
IS - 7
ER -