Abstract
Approximately one-third of alleles causing genetic diseases carry premature termination codons (PTCs), which lead to the production of truncated proteins. The past decade has seen considerable interest in therapeutic approaches aimed at readthrough of in-frame PTCs to enable synthesis of full-length proteins. However, attempts to readthrough PTCs in many diseases resulted in variable effects. Here, we focus on the efforts of such therapeutic approaches in cystic fibrosis and Duchenne muscular dystrophy and discuss the factors contributing to successful readthrough and how the nonsense-mediated mRNA decay (NMD) pathway regulates this response. A deeper understanding of the molecular basis for variable response to readthrough of PTCs is necessary so that appropriate therapies can be developed to treat many human genetic diseases caused by PTCs.
Original language | English |
---|---|
Pages (from-to) | 552-563 |
Number of pages | 12 |
Journal | Trends in Genetics |
Volume | 24 |
Issue number | 11 |
DOIs | |
State | Published - Nov 2008 |