TY - JOUR
T1 - Investigation of the Sensitivity of Tropical Cyclogenesis to Aerosol Intervention
AU - Tran, Thao Linh
AU - Fan, Jiwen
AU - Rosenfeld, Daniel
AU - Zhang, Yuwei
AU - Cleugh, Helen
AU - Hogg, Andrew Mc C.
AU - Prinsley, Roslyn
N1 - Publisher Copyright:
©2025. UChicago Argonne, LLC. Battelle Memorial Institute and The Author(s).
PY - 2025/4/28
Y1 - 2025/4/28
N2 - As risks from tropical cyclones (TCs) are fueled by climate change escalation, there is an urgent need for transformational solutions to complement traditional approaches. Seeding TCs using aerosols can be a promising method to reduce cyclone intensity, supported by theoretical understanding of the microphysical effects of aerosols on TC clouds. The ideal time to intervene effectively in TCs is likely during their initial stage, before TC wind speeds reach their peak. However, studies exploring potential aerosol effects on TC formation remain scarce. This study investigates how a TC embryo responds to the addition of aerosols of varying sizes using the Weather Research & Forecasting (WRF) model coupled with a spectral-bin microphysics model. We found that aerosols of different sizes and concentrations distinctively affect the pre-TC vortex's microstructure and dynamics. Fine and ultrafine aerosols enhance the latent heat of condensation, freezing, deposition, and riming, initially intensifying the vortex. However, this results in enhancement of the cold pool, thereby reducing inflow and surface fluxes, subsequently weakening the vortex. Coarse aerosols produce the opposite effect to that of fine and ultrafine aerosols. Coarse aerosols lead to a slower initial acceleration owing to enhanced warm rain. However, the resulting weaker cold pool is insufficient to effectively reduce the strength of the vortex at the later stage. This study provides critical insights into how aerosols of varying sizes and concentrations modulate the energy cascade and impact the evolution of a TC embryo, laying the groundwork for further research on TC risk management through aerosol intervention.
AB - As risks from tropical cyclones (TCs) are fueled by climate change escalation, there is an urgent need for transformational solutions to complement traditional approaches. Seeding TCs using aerosols can be a promising method to reduce cyclone intensity, supported by theoretical understanding of the microphysical effects of aerosols on TC clouds. The ideal time to intervene effectively in TCs is likely during their initial stage, before TC wind speeds reach their peak. However, studies exploring potential aerosol effects on TC formation remain scarce. This study investigates how a TC embryo responds to the addition of aerosols of varying sizes using the Weather Research & Forecasting (WRF) model coupled with a spectral-bin microphysics model. We found that aerosols of different sizes and concentrations distinctively affect the pre-TC vortex's microstructure and dynamics. Fine and ultrafine aerosols enhance the latent heat of condensation, freezing, deposition, and riming, initially intensifying the vortex. However, this results in enhancement of the cold pool, thereby reducing inflow and surface fluxes, subsequently weakening the vortex. Coarse aerosols produce the opposite effect to that of fine and ultrafine aerosols. Coarse aerosols lead to a slower initial acceleration owing to enhanced warm rain. However, the resulting weaker cold pool is insufficient to effectively reduce the strength of the vortex at the later stage. This study provides critical insights into how aerosols of varying sizes and concentrations modulate the energy cascade and impact the evolution of a TC embryo, laying the groundwork for further research on TC risk management through aerosol intervention.
KW - aerosol
KW - aerosol-cyclone interactions
KW - cold pool
KW - convection
KW - cyclogenesis mitigation
KW - tropical cyclone
UR - http://www.scopus.com/inward/record.url?scp=105003135284&partnerID=8YFLogxK
U2 - 10.1029/2024JD041600
DO - 10.1029/2024JD041600
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:105003135284
SN - 2169-897X
VL - 130
JO - Journal of Geophysical Research: Atmospheres
JF - Journal of Geophysical Research: Atmospheres
IS - 8
M1 - e2024JD041600
ER -