TY - JOUR
T1 - Ions in mixed dielectric solvents
T2 - Density profiles and osmotic pressure between charged interfaces
AU - Ben-Yaakov, Dan
AU - Andelman, David
AU - Harries, Daniel
AU - Podgornik, Rudi
PY - 2009/4/30
Y1 - 2009/4/30
N2 - The forces between charged macromolecules, usually given in terms of osmotic pressure, are highly affected by the intervening ionic solution. While in most theoretical studies the solution is treated as a homogeneous sdielectric medium, recent experimental studies concluded that, for a bathing solution composed of two solvents (binary mixture), the osmotic pressure between charged macromolecules is affected by the binary solvent composition. By adding loca solvent composition terms to the free energy, we obtain a general expression for the osmotic pressure, in planar geometry and within the mean-field framework. The added effect is due to the permeability inhomogeneity and nonelectrostatic short-range intebetween the ions and solvents (preferential solvation). This effect is mostly pronounced at small distances and leads to a reduction in the osmotic pressure for macromolecular separations of the order 1-2 nm. Furthermore, it leads to a depletion o one of the two solvents from the charged macromolecules (modeled as planar interfaces). Lastly, by comparing the theoretical results with experimental ones, an explanation based on preferential solvation is offered for recent experiments on the osmotic pof DNA solutions.
AB - The forces between charged macromolecules, usually given in terms of osmotic pressure, are highly affected by the intervening ionic solution. While in most theoretical studies the solution is treated as a homogeneous sdielectric medium, recent experimental studies concluded that, for a bathing solution composed of two solvents (binary mixture), the osmotic pressure between charged macromolecules is affected by the binary solvent composition. By adding loca solvent composition terms to the free energy, we obtain a general expression for the osmotic pressure, in planar geometry and within the mean-field framework. The added effect is due to the permeability inhomogeneity and nonelectrostatic short-range intebetween the ions and solvents (preferential solvation). This effect is mostly pronounced at small distances and leads to a reduction in the osmotic pressure for macromolecular separations of the order 1-2 nm. Furthermore, it leads to a depletion o one of the two solvents from the charged macromolecules (modeled as planar interfaces). Lastly, by comparing the theoretical results with experimental ones, an explanation based on preferential solvation is offered for recent experiments on the osmotic pof DNA solutions.
UR - http://www.scopus.com/inward/record.url?scp=66349137659&partnerID=8YFLogxK
U2 - 10.1021/jp9003533
DO - 10.1021/jp9003533
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:66349137659
SN - 1520-6106
VL - 113
SP - 6001
EP - 6011
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 17
ER -