Ions in mixed dielectric solvents: Density profiles and osmotic pressure between charged interfaces

Dan Ben-Yaakov, David Andelman*, Daniel Harries, Rudi Podgornik

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

63 Scopus citations

Abstract

The forces between charged macromolecules, usually given in terms of osmotic pressure, are highly affected by the intervening ionic solution. While in most theoretical studies the solution is treated as a homogeneous sdielectric medium, recent experimental studies concluded that, for a bathing solution composed of two solvents (binary mixture), the osmotic pressure between charged macromolecules is affected by the binary solvent composition. By adding loca solvent composition terms to the free energy, we obtain a general expression for the osmotic pressure, in planar geometry and within the mean-field framework. The added effect is due to the permeability inhomogeneity and nonelectrostatic short-range intebetween the ions and solvents (preferential solvation). This effect is mostly pronounced at small distances and leads to a reduction in the osmotic pressure for macromolecular separations of the order 1-2 nm. Furthermore, it leads to a depletion o one of the two solvents from the charged macromolecules (modeled as planar interfaces). Lastly, by comparing the theoretical results with experimental ones, an explanation based on preferential solvation is offered for recent experiments on the osmotic pof DNA solutions.

Original languageEnglish
Pages (from-to)6001-6011
Number of pages11
JournalJournal of Physical Chemistry B
Volume113
Issue number17
DOIs
StatePublished - 30 Apr 2009

Fingerprint

Dive into the research topics of 'Ions in mixed dielectric solvents: Density profiles and osmotic pressure between charged interfaces'. Together they form a unique fingerprint.

Cite this