IRFL: Image Recognition of Figurative Language

Ron Yosef, Yonatan Bitton, Dafna Shahaf

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Figures of speech such as metaphors, similes, and idioms are integral parts of human communication. They are ubiquitous in many forms of discourse, allowing people to convey complex, abstract ideas and evoke emotion. As figurative forms are often conveyed through multiple modalities (e.g., both text and images), understanding multimodal figurative language is an important AI challenge, weaving together profound vision, language, commonsense and cultural knowledge. In this work, we develop the Image Recognition of Figurative Language (IRFL) dataset. We leverage human annotation and an automatic pipeline we created to generate a multimodal dataset, and introduce two novel tasks as a benchmark for multimodal figurative language understanding. We experimented with state-of-the-art vision and language models and found that the best (22%) performed substantially worse than humans (97%). We release our dataset, benchmark, and code, in hopes of driving the development of models that can better understand figurative language.

Original languageAmerican English
Title of host publicationFindings of the Association for Computational Linguistics
Subtitle of host publicationEMNLP 2023
PublisherAssociation for Computational Linguistics (ACL)
Pages1044-1058
Number of pages15
ISBN (Electronic)9798891760615
StatePublished - 2023
Event2023 Findings of the Association for Computational Linguistics: EMNLP 2023 - Singapore, Singapore
Duration: 6 Dec 202310 Dec 2023

Publication series

NameFindings of the Association for Computational Linguistics: EMNLP 2023

Conference

Conference2023 Findings of the Association for Computational Linguistics: EMNLP 2023
Country/TerritorySingapore
CitySingapore
Period6/12/2310/12/23

Bibliographical note

Publisher Copyright:
© 2023 Association for Computational Linguistics.

Fingerprint

Dive into the research topics of 'IRFL: Image Recognition of Figurative Language'. Together they form a unique fingerprint.

Cite this