TY - JOUR
T1 - Iridium-Based Time-Resolved Luminescent Sensor for Ba2+ Detection
AU - The NEXT collaboration
AU - Aranburu, Ane I.
AU - Elorza, Mikel
AU - Valle, Pablo R.G.
AU - Pazos, Ariadna
AU - Brodolin, Alexey
AU - Herrero-Gómez, Pablo
AU - Barcelon, J. Eduardo
AU - Molina-Terriza, Gabriel
AU - Monrabal, Francesc
AU - Rogero, Celia
AU - Cossío, Fernando P.
AU - Gómez-Cadenas, Juan José
AU - Tonnelé, Claire
AU - Freixa, Zoraida
AU - Adams, C.
AU - Almazán, H.
AU - Álvarez, V.
AU - Aparicio, B.
AU - Aranburu, A. I.
AU - AraziI, L.
AU - Arnquist, J.
AU - Auria-Luna, F.
AU - Ayet, S.
AU - Azevedo, C. D.R.
AU - Bailey, K.
AU - Ballester, F.
AU - Barcelon, J. E.
AU - del Barrio-Torregrosa, M.
AU - Bayo, A.
AU - Benlloch-Rodriguez, J. M.
AU - Borges, F. I.G.M.
AU - Brodolin, A.
AU - Byrnes, N.
AU - Gómez-Cadenas, J. J.
AU - Caŕcel, S.
AU - Castillo, A.
AU - Cebrián, S.
AU - Church, E.
AU - Cid, L.
AU - Conde, C. A.N.
AU - Contreras, T.
AU - Cossío, F. P.
AU - Dey, E.
AU - Díaz, G.
AU - Dickel, T.
AU - Echevarria, C.
AU - Elorza, M.
AU - Escada, J.
AU - Esteve, R.
AU - Shomroni, I.
N1 - Publisher Copyright:
© 2025 American Chemical Society.
PY - 2025
Y1 - 2025
N2 - We present a new time-resolved chemosensor for the detection of Ba2+ ions. Our sensor is based on an iridium(III) compound with dual (fluorescent and phosphorescent) emission. The nature of the luminescence response of the sensor depends on its state; specifically, the phosphorescence emission of the free state at long wavelengths is strongly suppressed, while that of the Ba2+-chelated compound is strongly enhanced. Furthermore, the residual phosphorescence emission of the free compound decays with two short decay constants, τfree1 ∼ 3.5 ns (88%) and τfree2 ∼ 209 ns (12%), while the chelated compound decays with two long decay constants, τbound1 ∼ 429 ns (21%) and τbound2 ∼ 1128 ns (76%). This exceptional behavior, supported by quantum chemical calculations, allows a time-based separation between the signals of the free and the chelated species. Among other applications, our sensor could be the basis of a Ba2+ tagging detector for neutrinoless double beta decay searches in xenon.
AB - We present a new time-resolved chemosensor for the detection of Ba2+ ions. Our sensor is based on an iridium(III) compound with dual (fluorescent and phosphorescent) emission. The nature of the luminescence response of the sensor depends on its state; specifically, the phosphorescence emission of the free state at long wavelengths is strongly suppressed, while that of the Ba2+-chelated compound is strongly enhanced. Furthermore, the residual phosphorescence emission of the free compound decays with two short decay constants, τfree1 ∼ 3.5 ns (88%) and τfree2 ∼ 209 ns (12%), while the chelated compound decays with two long decay constants, τbound1 ∼ 429 ns (21%) and τbound2 ∼ 1128 ns (76%). This exceptional behavior, supported by quantum chemical calculations, allows a time-based separation between the signals of the free and the chelated species. Among other applications, our sensor could be the basis of a Ba2+ tagging detector for neutrinoless double beta decay searches in xenon.
KW - dual emitter
KW - iridium
KW - ratiometric
KW - sensors
KW - time-resolved luminescence
UR - http://www.scopus.com/inward/record.url?scp=105003262240&partnerID=8YFLogxK
U2 - 10.1021/acssensors.4c01892
DO - 10.1021/acssensors.4c01892
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 40213995
AN - SCOPUS:105003262240
SN - 2379-3694
JO - ACS Sensors
JF - ACS Sensors
ER -