TY - JOUR
T1 - Isolation and characterisation of new putative probiotic bacteria from human colonic flora
AU - Raz, Irit
AU - Gollop, Natan
AU - Polak-Charcon, Sylvie
AU - Schwartz, Betty
PY - 2007/4
Y1 - 2007/4
N2 - The present study describes a novel bacterial isolate exhibiting high ability to synthesise and secrete butyrate. The novel isolated bacterium was obtained from human faeces and grown in selective liquid intestinal microflora medium containing rumen fluid under microaerobic conditions. Its probiotic properties were demonstrated by the ability of the isolate to survive high acidity and medium containing bile acids and the ability to adhere to colon cancer cells (Caco-2) in vitro. Phylogenetic identity to Enterococcus durans was established using specific primers for 16S rRNA (99% probability). PCR analyses with primers to the bacterial gene encoding butyrate kinase, present in the butyrogenic bacteria Clostridium, showed that this gene is present in E. durans. The in vivo immunoprotective and anti-inflammatory effects of E. durans were assessed in dextran sodium sulfate (DSS)-induced colitis in Balb/c mice. Administration of E. durans ameliorated histological, clinical and biochemical scores directly related to intestinal inflammation whereas the lactic acid bacterium Lactobacillus delbrueckii was ineffective in this regard. Colonic cDNA concentrations of IL-1β and TNF-α were significantly down regulated in DSS-treated E. durans-fed mice but not in control or DSS-treated L. delbrueckii-fed mice. Fluorescent in situ hybridisation analyses of colonic tissue from mice fed E. durans, using a butyrate kinase probe, demonstrated that E. durans significantly adheres to the colonic tissue. The novel isolated bacterium described in the present paper, upon further characterisation, can be developed into a useful probiotic aimed at the treatment of patients suffering from ulcerative colitis.
AB - The present study describes a novel bacterial isolate exhibiting high ability to synthesise and secrete butyrate. The novel isolated bacterium was obtained from human faeces and grown in selective liquid intestinal microflora medium containing rumen fluid under microaerobic conditions. Its probiotic properties were demonstrated by the ability of the isolate to survive high acidity and medium containing bile acids and the ability to adhere to colon cancer cells (Caco-2) in vitro. Phylogenetic identity to Enterococcus durans was established using specific primers for 16S rRNA (99% probability). PCR analyses with primers to the bacterial gene encoding butyrate kinase, present in the butyrogenic bacteria Clostridium, showed that this gene is present in E. durans. The in vivo immunoprotective and anti-inflammatory effects of E. durans were assessed in dextran sodium sulfate (DSS)-induced colitis in Balb/c mice. Administration of E. durans ameliorated histological, clinical and biochemical scores directly related to intestinal inflammation whereas the lactic acid bacterium Lactobacillus delbrueckii was ineffective in this regard. Colonic cDNA concentrations of IL-1β and TNF-α were significantly down regulated in DSS-treated E. durans-fed mice but not in control or DSS-treated L. delbrueckii-fed mice. Fluorescent in situ hybridisation analyses of colonic tissue from mice fed E. durans, using a butyrate kinase probe, demonstrated that E. durans significantly adheres to the colonic tissue. The novel isolated bacterium described in the present paper, upon further characterisation, can be developed into a useful probiotic aimed at the treatment of patients suffering from ulcerative colitis.
KW - Butyrate
KW - Butyrate kinase
KW - Enterococcus durans
KW - Intestinal microflora
KW - Probiotics
KW - Short-chain fatty acids
UR - http://www.scopus.com/inward/record.url?scp=33947505331&partnerID=8YFLogxK
U2 - 10.1017/S000711450747249X
DO - 10.1017/S000711450747249X
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 17349085
AN - SCOPUS:33947505331
SN - 0007-1145
VL - 97
SP - 725
EP - 734
JO - British Journal of Nutrition
JF - British Journal of Nutrition
IS - 4
ER -