Kernel-Arma for hand tracking and Brain-Machine Interfacing during 3D motor control

Lavi Shpigelman*, Hagai Lalazar, Eilon Vaadia

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

51 Scopus citations

Abstract

Using machine learning algorithms to decode intended behavior from neural activity serves a dual purpose. First, these tools allow patients to interact with their environment through a Brain-Machine Interface (BMI). Second, analyzing the characteristics of such methods can reveal the relative significance of various features of neural activity, task stimuli, and behavior. In this study we adapted, implemented and tested a machine learning method called Kernel Auto-Regressive Moving Average (KARMA), for the task of inferring movements from neural activity in primary motor cortex. Our version of this algorithm is used in an online learning setting and is updated after a sequence of inferred movements is completed. We first used it to track real hand movements executed by a monkey in a standard 3D reaching task. We then applied it in a closed-loop BMI setting to infer intended movement, while the monkey's arms were comfortably restrained, thus performing the task using the BMI alone. KARMA is a recurrent method that learns a nonlinear model of output dynamics. It uses similarity functions (termed kernels) to compare between inputs. These kernels can be structured to incorporate domain knowledge into the method. We compare KARMA to various state-of-the-art methods by evaluating tracking performance and present results from the KARMA based BMI experiments.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference
PublisherNeural Information Processing Systems
Pages1489-1496
Number of pages8
ISBN (Print)9781605609492
StatePublished - 2009
Event22nd Annual Conference on Neural Information Processing Systems, NIPS 2008 - Vancouver, BC, Canada
Duration: 8 Dec 200811 Dec 2008

Publication series

NameAdvances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference

Conference

Conference22nd Annual Conference on Neural Information Processing Systems, NIPS 2008
Country/TerritoryCanada
CityVancouver, BC
Period8/12/0811/12/08

Fingerprint

Dive into the research topics of 'Kernel-Arma for hand tracking and Brain-Machine Interfacing during 3D motor control'. Together they form a unique fingerprint.

Cite this