TY - GEN
T1 - Kernel-Arma for hand tracking and Brain-Machine Interfacing during 3D motor control
AU - Shpigelman, Lavi
AU - Lalazar, Hagai
AU - Vaadia, Eilon
PY - 2009
Y1 - 2009
N2 - Using machine learning algorithms to decode intended behavior from neural activity serves a dual purpose. First, these tools allow patients to interact with their environment through a Brain-Machine Interface (BMI). Second, analyzing the characteristics of such methods can reveal the relative significance of various features of neural activity, task stimuli, and behavior. In this study we adapted, implemented and tested a machine learning method called Kernel Auto-Regressive Moving Average (KARMA), for the task of inferring movements from neural activity in primary motor cortex. Our version of this algorithm is used in an online learning setting and is updated after a sequence of inferred movements is completed. We first used it to track real hand movements executed by a monkey in a standard 3D reaching task. We then applied it in a closed-loop BMI setting to infer intended movement, while the monkey's arms were comfortably restrained, thus performing the task using the BMI alone. KARMA is a recurrent method that learns a nonlinear model of output dynamics. It uses similarity functions (termed kernels) to compare between inputs. These kernels can be structured to incorporate domain knowledge into the method. We compare KARMA to various state-of-the-art methods by evaluating tracking performance and present results from the KARMA based BMI experiments.
AB - Using machine learning algorithms to decode intended behavior from neural activity serves a dual purpose. First, these tools allow patients to interact with their environment through a Brain-Machine Interface (BMI). Second, analyzing the characteristics of such methods can reveal the relative significance of various features of neural activity, task stimuli, and behavior. In this study we adapted, implemented and tested a machine learning method called Kernel Auto-Regressive Moving Average (KARMA), for the task of inferring movements from neural activity in primary motor cortex. Our version of this algorithm is used in an online learning setting and is updated after a sequence of inferred movements is completed. We first used it to track real hand movements executed by a monkey in a standard 3D reaching task. We then applied it in a closed-loop BMI setting to infer intended movement, while the monkey's arms were comfortably restrained, thus performing the task using the BMI alone. KARMA is a recurrent method that learns a nonlinear model of output dynamics. It uses similarity functions (termed kernels) to compare between inputs. These kernels can be structured to incorporate domain knowledge into the method. We compare KARMA to various state-of-the-art methods by evaluating tracking performance and present results from the KARMA based BMI experiments.
UR - http://www.scopus.com/inward/record.url?scp=84858778244&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:84858778244
SN - 9781605609492
T3 - Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference
SP - 1489
EP - 1496
BT - Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference
PB - Neural Information Processing Systems
T2 - 22nd Annual Conference on Neural Information Processing Systems, NIPS 2008
Y2 - 8 December 2008 through 11 December 2008
ER -