TY - JOUR
T1 - Kinematics of syneclogite deformation in the Bergen Arcs, Norway
T2 - Implications for exhumation mechanisms
AU - Raimbourg, Hugues
AU - Jolivet, Laurent
AU - Labrousse, Loïc
AU - Leroy, Yves
AU - Avigad, Dov
PY - 2005
Y1 - 2005
N2 - The northwestern part of Holsnøy island, in the Bergen Arcs, Norway, consists of a granulite-facies protolith partially transformed at depth in eclogite (700 °C, > 19 kbars) and amphibolite (650 °C, 8-10 kbars) facies during the Caledonian orogenesis. Eclogitized zones are mainly planar objects (fractures with parallel reaction bands and cm-to-100 m-scale shear zones). Eclogitic zones are distributed in two sets of orientations and the associated deformation can be described as 'bookshelf tectonics'. The major shear zones strike around N120 and dip to the North, and show consistent top-to-the-NE shear sense throughout the area. In the large-scale kinematic frame of Caledonian NW-dipping s lab, eclogitic shear zones are interpreted as the way to detach crustal units from the subducting slab and to prevent their further sinking. As the retrograde amphibolitic deformation pattern is similar to the eclogitic one, the detached crustal units started their way up along these eclogitic shear zones. Radiometric ages of eclogitic and amphibolitic metamorphism and their comparison with the chronology of Caledonian orogenesis show that the deformation recorded on Holsnøy occurred in a convergent context. The mechanism we propose can thus account for the first steps of exhumation during collision.
AB - The northwestern part of Holsnøy island, in the Bergen Arcs, Norway, consists of a granulite-facies protolith partially transformed at depth in eclogite (700 °C, > 19 kbars) and amphibolite (650 °C, 8-10 kbars) facies during the Caledonian orogenesis. Eclogitized zones are mainly planar objects (fractures with parallel reaction bands and cm-to-100 m-scale shear zones). Eclogitic zones are distributed in two sets of orientations and the associated deformation can be described as 'bookshelf tectonics'. The major shear zones strike around N120 and dip to the North, and show consistent top-to-the-NE shear sense throughout the area. In the large-scale kinematic frame of Caledonian NW-dipping s lab, eclogitic shear zones are interpreted as the way to detach crustal units from the subducting slab and to prevent their further sinking. As the retrograde amphibolitic deformation pattern is similar to the eclogitic one, the detached crustal units started their way up along these eclogitic shear zones. Radiometric ages of eclogitic and amphibolitic metamorphism and their comparison with the chronology of Caledonian orogenesis show that the deformation recorded on Holsnøy occurred in a convergent context. The mechanism we propose can thus account for the first steps of exhumation during collision.
UR - http://www.scopus.com/inward/record.url?scp=20444441455&partnerID=8YFLogxK
U2 - 10.1144/GSL.SP.2005.243.01.13
DO - 10.1144/GSL.SP.2005.243.01.13
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:20444441455
SN - 0305-8719
VL - 243
SP - 175
EP - 192
JO - Geological Society Special Publication
JF - Geological Society Special Publication
ER -