TY - JOUR
T1 - Kolmogorov Width of Discrete Linear Spaces
T2 - an Approach to Matrix Rigidity
AU - Samorodnitsky, Alex
AU - Shkredov, Ilya
AU - Yekhanin, Sergey
N1 - Publisher Copyright:
© 2016, Springer International Publishing.
PY - 2016/6/1
Y1 - 2016/6/1
N2 - A square matrix V is called rigid if every matrix V′ obtained by altering a small number of entries of V has sufficiently high rank. While random matrices are rigid with high probability, no explicit constructions of rigid matrices are known to date. Obtaining such explicit matrices would have major implications in computational complexity theory. One approach to establishing rigidity of a matrix V is to come up with a property that is satisfied by any collection of vectors arising from a low-dimensional space, but is not satisfied by the rows of V even after alterations. In this paper, we propose such a candidate property that has the potential of establishing rigidity of combinatorial design matrices over the field F2. Stated informally, we conjecture that under a suitable embedding of F2n into Rn, vectors arising from a low-dimensional F2-linear space always have somewhat small Kolmogorov width, i.e., admit a non-trivial simultaneous approximation by a low-dimensional Euclidean space. This implies rigidity of combinatorial designs, as their rows do not admit such an approximation even after alterations. Our main technical contribution is a collection of results establishing weaker forms and special cases of the conjecture above.
AB - A square matrix V is called rigid if every matrix V′ obtained by altering a small number of entries of V has sufficiently high rank. While random matrices are rigid with high probability, no explicit constructions of rigid matrices are known to date. Obtaining such explicit matrices would have major implications in computational complexity theory. One approach to establishing rigidity of a matrix V is to come up with a property that is satisfied by any collection of vectors arising from a low-dimensional space, but is not satisfied by the rows of V even after alterations. In this paper, we propose such a candidate property that has the potential of establishing rigidity of combinatorial design matrices over the field F2. Stated informally, we conjecture that under a suitable embedding of F2n into Rn, vectors arising from a low-dimensional F2-linear space always have somewhat small Kolmogorov width, i.e., admit a non-trivial simultaneous approximation by a low-dimensional Euclidean space. This implies rigidity of combinatorial designs, as their rows do not admit such an approximation even after alterations. Our main technical contribution is a collection of results establishing weaker forms and special cases of the conjecture above.
KW - Kolmogorov width
KW - Matrix rigidity
KW - linear codes
UR - http://www.scopus.com/inward/record.url?scp=84964403153&partnerID=8YFLogxK
U2 - 10.1007/s00037-016-0129-8
DO - 10.1007/s00037-016-0129-8
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84964403153
SN - 1016-3328
VL - 25
SP - 309
EP - 348
JO - Computational Complexity
JF - Computational Complexity
IS - 2
ER -