Kx[Bi4- xMnxS6], Design of a Highly Selective Ion Exchange Material and Direct Gap 2D Semiconductor

Ruiqi Wang, Haijie Chen, Yi Xiao, Ido Hadar, Kejun Bu, Xian Zhang, Jie Pan, Yuhao Gu, Zhongnan Guo, Fuqiang Huang*, Mercouri G. Kanatzidis

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Layered sulfides with high selectivity for binding heavy metal ions and radionuclide ions are promising materials in effluent treatment and water purification. Here we present a rationally designed layered sulfide Kx[Bi4-xMnxS6] (x = 1.28) deriving from the Bi2Se3-structure type by targeted substitution to generate quintuple [Bi4-xMnxS6]x- layers and K+ cations between them. The material has dual functionality: it is an attractive semiconductor with a bandgap of 1.40 eV and also an environmental remediation ion-exchange material. The compound is paramagnetic, and optical adsorption spectroscopy and DFT electronic structure calculations reveal that it possesses a direct band gap and a work function of 5.26 eV. The K+ ions exchange readily with alkali or alkaline-earth ions (Rb+, Cs+, and Sr2+) or soft ions (Pb2+, Cd2+, Cr3+, and Zn2+). Furthermore, when the K+ ions are depleted the Mn2+ ions in the Bi2Se3-type slabs can also be replaced by soft ions, achieving large adsorption capacities. The ion exchange reactions of Kx[Bi4-xMnxS6] can be used to create new materials of the type Mx[Bi4-xMnxS6] in a low temperature kinetically controlled manner with significantly different electronic structures. The Kx[Bi4-xMnxS6] (x = 1.28) exhibits efficient capture of Cd2+ and Pb2+ ions with high distribution coefficient, Kd (107 mL/g), and exchange capacities of 221.2 and 342.4 mg/g, respectively. The material exhibits excellent capacities even in high concentration of competitive ions and over a broad pH range (2.5-11.0). The results highlight the promise of the Kx[Bi4-xMnxS6] (x = 1.28) phase to serve not only as a highly selective adsorbent for industrial and nuclear wastewater but also as a magnetic 2D semiconductor for optoelectronic applications.

Original languageAmerican English
Pages (from-to)16903-16914
Number of pages12
JournalJournal of the American Chemical Society
Volume141
Issue number42
DOIs
StatePublished - 23 Oct 2019
Externally publishedYes

Bibliographical note

Funding Information:
Work at Northwestern was supported partly by the National Science Foundation (Grant DMR-1708254). This work also was partially supported by the Innovation Program of the CAS (Grant KJCX2-EW-W11), “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grants XDB04040200), NSF of China (Grants 91122034, 51125006, 51202279, 61376056, and 21201012), and Science and Technology Commission of Shanghai (Grant 12XD1406800). PYSA measurements were carried out with equipment acquired by ONR DURIP grant N00014-18-1-2102.

Publisher Copyright:
Copyright © 2019 American Chemical Society.

Fingerprint

Dive into the research topics of 'Kx[Bi4- xMnxS6], Design of a Highly Selective Ion Exchange Material and Direct Gap 2D Semiconductor'. Together they form a unique fingerprint.

Cite this