Large strongly anti-Urysohn spaces exist

István Juhász*, Saharon Shelah, Lajos Soukup, Zoltán Szentmiklóssy

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

As defined in [3], a Hausdorff space is strongly anti-Urysohn (in short: SAU) if it has at least two non-isolated points and any two infinite closed subsets of it intersect. Our main result answers the two main questions of [3] by providing a ZFC construction of a locally countable SAU space of cardinality 2c. The construction hinges on the existence of 2c weak P-points in ω, a very deep result of Ken Kunen. It remains open if SAU spaces of cardinality >2c could exist, while it was shown in [3] that 22c is an upper bound. Also, we do not know if crowded SAU spaces, i.e. ones without any isolated points, exist in ZFC but we obtained the following consistency results concerning such spaces. (1) It is consistent that c is as large as you wish and there is a locally countable and crowded SAU space of cardinality c+. (2) It is consistent that both c and 2c are as large as you wish and there is a crowded SAU space of cardinality 2c. (3) For any uncountable cardinal κ the following statements are equivalent: (i) κ=cof([κ]ω,⊆). (ii) There is a locally countable and crowded SAU space of size κ in the generic extension obtained by adding κ Cohen reals. (iii) There is a locally countable and countably compact T1-space of size κ in some CCC generic extension.

Original languageEnglish
Article number108288
JournalTopology and its Applications
Volume323
DOIs
StatePublished - 1 Jan 2023

Bibliographical note

Publisher Copyright:
© 2022 Elsevier B.V.

Keywords

  • Cohen model
  • Crowded
  • Free sequence
  • Hausdorff space
  • Urysohn space

Fingerprint

Dive into the research topics of 'Large strongly anti-Urysohn spaces exist'. Together they form a unique fingerprint.

Cite this