Leakage resilient one-way functions: The auxiliary-input setting

Ilan Komargodski*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Most cryptographic schemes are designed in a model where perfect secrecy of the secret key is assumed. In most physical implementations, however, some form of information leakage is inherent and unavoidable. To deal with this, a flurry of works showed how to construct basic cryptographic primitives that are resilient to various forms of leakage. Dodis et al. (FOCS ’10) formalized and constructed leakage resilient one-way functions. These are one-way functions f such that given a random image f(x) and leakage g(x) it is still hard to invert f(x). Based on any one-way function, Dodis et al. constructed such a one-way function that is leakage resilient assuming that an attacker can leak any lossy function g of the input. In this work we consider the problem of constructing leakage resilient one-way functions that are secure with respect to arbitrary computationally hiding leakage (a.k.a auxiliary-input). We consider both types of leakage — selective and adaptive — and prove various possibility and impossibility results. On the negative side, we show that if the leakage is an adaptivelychosen arbitrary one-way function, then it is impossible to construct leakage resilient one-way functions. The latter is proved both in the random oracle model (without any further assumptions) and in the standard model based on a strong vector-variant of DDH. On the positive side, we observe that when the leakage is chosen ahead of time, there are leakage resilient one-way functions based on a variety of assumption.

Original languageEnglish
Title of host publicationTheory of Cryptography - 14th International Conference, TCC 2016-B, Proceedings
EditorsAdam Smith, Martin Hirt
PublisherSpringer Verlag
Pages139-158
Number of pages20
ISBN (Print)9783662536407
DOIs
StatePublished - 2016
Externally publishedYes
Event14th International Conference on Theory of Cryptography, TCC 2016-B - Beijing, China
Duration: 31 Oct 20163 Nov 2016

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9985 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference14th International Conference on Theory of Cryptography, TCC 2016-B
Country/TerritoryChina
CityBeijing
Period31/10/163/11/16

Bibliographical note

Publisher Copyright:
© International Association for Cryptologic Research 2016.

Fingerprint

Dive into the research topics of 'Leakage resilient one-way functions: The auxiliary-input setting'. Together they form a unique fingerprint.

Cite this