TY - JOUR
T1 - Learning complexity vs communication complexity
AU - Linial, Nati
AU - Shraibman, Adi
PY - 2009/3
Y1 - 2009/3
N2 - This paper has two main focal points. We first consider an important class of machine learning algorithms: large margin classifiers, such as Support Vector Machines. The notion of margin complexity quantifies the extent to which a given class of functions can be learned by large margin classifiers. We prove that up to a small multiplicative constant, margin complexity is equal to the inverse of discrepancy. This establishes a strong tie between seemingly very different notions from two distinct areas. In the same way that matrix rigidity is related to rank, we introduce the notion of rigidity of margin complexity. We prove that sign matrices with small margin complexity rigidity are very rare. This leads to the question of proving lower bounds on the rigidity of margin complexity. Quite surprisingly, this question turns out to be closely related to basic open problems in communication complexity, e.g., whether PSPACE can be separated from the polynomial hierarchy in communication complexity. Communication is a key ingredient in many types of learning. This explains the relations between the field of learning theory and that of communication complexity [6, l0, 16, 26]. The results of this paper constitute another link in this rich web of relations. These new results have already been applied toward the solution of several open problems in communication complexity [18, 20, 29].
AB - This paper has two main focal points. We first consider an important class of machine learning algorithms: large margin classifiers, such as Support Vector Machines. The notion of margin complexity quantifies the extent to which a given class of functions can be learned by large margin classifiers. We prove that up to a small multiplicative constant, margin complexity is equal to the inverse of discrepancy. This establishes a strong tie between seemingly very different notions from two distinct areas. In the same way that matrix rigidity is related to rank, we introduce the notion of rigidity of margin complexity. We prove that sign matrices with small margin complexity rigidity are very rare. This leads to the question of proving lower bounds on the rigidity of margin complexity. Quite surprisingly, this question turns out to be closely related to basic open problems in communication complexity, e.g., whether PSPACE can be separated from the polynomial hierarchy in communication complexity. Communication is a key ingredient in many types of learning. This explains the relations between the field of learning theory and that of communication complexity [6, l0, 16, 26]. The results of this paper constitute another link in this rich web of relations. These new results have already been applied toward the solution of several open problems in communication complexity [18, 20, 29].
UR - http://www.scopus.com/inward/record.url?scp=67649237601&partnerID=8YFLogxK
U2 - 10.1017/S0963548308009656
DO - 10.1017/S0963548308009656
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:67649237601
SN - 0963-5483
VL - 18
SP - 227
EP - 245
JO - Combinatorics Probability and Computing
JF - Combinatorics Probability and Computing
IS - 1-2
ER -