Learning probabilistic models of link structure

Lise Getoor*, Nir Friedman, Daphne Koller, Benjamin Taskar

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

192 Scopus citations

Abstract

Most real-world data is heterogeneous and richly interconnected. Examples include the Web, hypertext, bibliometric data and social networks. In contrast, most statistical learning methods work with "flat" data representations, forcing us to convert our data into a form that loses much of the link structure. The recently introduced framework of probabilistic relational models (PRMs) embraces the object-relational nature of structured data by capturing probabilistic interactions between attributes of related entities. In this paper, we extend this framework by modeling interactions between the attributes and the link structure itself. An advantage of our approach is a unified generative model for both content and relational structure. We propose two mechanisms for representing a probabilistic distribution over link structures: reference uncertainty and existence uncertainty. We describe the appropriate conditions for using each model and present learning algorithms for each. We present experimental results showing that the learned models can be used to predict link structure and, moreover, the observed link structure can be used to provide better predictions for the attributes in the model.

Original languageAmerican English
Pages (from-to)679-707
Number of pages29
JournalJournal of Machine Learning Research
Volume3
Issue number4-5
StatePublished - 15 May 2003

Keywords

  • Bayesian networks
  • Probabilistic relational models
  • Relational learning

Fingerprint

Dive into the research topics of 'Learning probabilistic models of link structure'. Together they form a unique fingerprint.

Cite this