TY - JOUR
T1 - Leptin-induced endothelium-dependent vasorelaxation of peripheral arteries in lean and obese rats
T2 - Role of nitric oxide and hydrogen sulfide
AU - Jamroz-Wiśniewska, Anna
AU - Gertler, Arieh
AU - Solomon, Gili
AU - Wood, Mark E.
AU - Whiteman, Matthew
AU - Beltowski, Jerzy
PY - 2014/1/24
Y1 - 2014/1/24
N2 - Adipose tissue hormone leptin induces endothelium-dependent vasorelaxation mediated by nitric oxide (NO) and endothelium-derived hyperpolarizing factors (EDHF). Previously it has been demonstrated that in short-term obesity the NO-dependent and the EDHF-dependent components of vascular effect of leptin are impaired and up-regulated, respectively. Herein we examined the mechanism of the EDHF-dependent vasodilatory effect of leptin and tested the hypothesis that alterations of acute vascular effects of leptin in obesity are accounted for by chronic hyperleptinemia. The study was performed in 5 groups of rats: (1) control, (2) treated with exogenous leptin for 1 week to induce hyperleptinemia, (3) obese, fed highly-palatable diet for 4 weeks, (4) obese treated with pegylated superactive rat leptin receptor antagonist (PEG-SRLA) for 1 week, (5) fed standard chow and treated with PEG-SRLA. Acute effect of leptin on isometric tension of mesenteric artery segments was measured ex vivo . Leptin relaxed phenylephrine-preconstricted vascular segments in NO- and EDHF-dependent manner. The NO-dependent component was impaired and the EDHF-dependent component was increased in the leptin-treated and obese groups and in the latter group both these effects were abolished by PEG-SRLA. The EDHF-dependent vasodilatory effect of leptin was blocked by either the inhibitor of cystathionine γ-lyase, propargylglycine, or a hydrogen sulfide (H2S) scavenger, bismuth (III) subsalicylate. The results indicate that NO deficiency is compensated by the up-regulation of EDHF in obese rats and both effects are accounted for by chronic hyperleptinemia. The EDHF-dependent component of leptin-induced vasorelaxation is mediated, at least partially, by H2S.
AB - Adipose tissue hormone leptin induces endothelium-dependent vasorelaxation mediated by nitric oxide (NO) and endothelium-derived hyperpolarizing factors (EDHF). Previously it has been demonstrated that in short-term obesity the NO-dependent and the EDHF-dependent components of vascular effect of leptin are impaired and up-regulated, respectively. Herein we examined the mechanism of the EDHF-dependent vasodilatory effect of leptin and tested the hypothesis that alterations of acute vascular effects of leptin in obesity are accounted for by chronic hyperleptinemia. The study was performed in 5 groups of rats: (1) control, (2) treated with exogenous leptin for 1 week to induce hyperleptinemia, (3) obese, fed highly-palatable diet for 4 weeks, (4) obese treated with pegylated superactive rat leptin receptor antagonist (PEG-SRLA) for 1 week, (5) fed standard chow and treated with PEG-SRLA. Acute effect of leptin on isometric tension of mesenteric artery segments was measured ex vivo . Leptin relaxed phenylephrine-preconstricted vascular segments in NO- and EDHF-dependent manner. The NO-dependent component was impaired and the EDHF-dependent component was increased in the leptin-treated and obese groups and in the latter group both these effects were abolished by PEG-SRLA. The EDHF-dependent vasodilatory effect of leptin was blocked by either the inhibitor of cystathionine γ-lyase, propargylglycine, or a hydrogen sulfide (H2S) scavenger, bismuth (III) subsalicylate. The results indicate that NO deficiency is compensated by the up-regulation of EDHF in obese rats and both effects are accounted for by chronic hyperleptinemia. The EDHF-dependent component of leptin-induced vasorelaxation is mediated, at least partially, by H2S.
UR - http://www.scopus.com/inward/record.url?scp=84899844950&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0086744
DO - 10.1371/journal.pone.0086744
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 24475175
AN - SCOPUS:84899844950
SN - 1932-6203
VL - 9
JO - PLoS ONE
JF - PLoS ONE
IS - 1
M1 - e86744
ER -