LET'S DO THE TIME-WARP-ATTEND: LEARNING TOPOLOGICAL INVARIANTS OF DYNAMICAL SYSTEMS

Noa Moriel, Matthew Ricci, Mor Nitzan*

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

Abstract

Dynamical systems across the sciences, from electrical circuits to ecological networks, undergo qualitative and often catastrophic changes in behavior, called bifurcations, when their underlying parameters cross a threshold. Existing methods predict oncoming catastrophes in individual systems but are primarily time-series-based and struggle both to categorize qualitative dynamical regimes across diverse systems and to generalize to real data. To address this challenge, we propose a data-driven, physically-informed deep-learning framework for classifying dynamical regimes and characterizing bifurcation boundaries based on the extraction of topologically invariant features. We focus on the paradigmatic case of the supercritical Hopf bifurcation, which is used to model periodic dynamics across a wide range of applications. Our convolutional attention method is trained with data augmentations that encourage the learning of topological invariants which can be used to detect bifurcation boundaries in unseen systems and to design models of biological systems like oscillatory gene regulatory networks. We further demonstrate our method's use in analyzing real data by recovering distinct proliferation and differentiation dynamics along pancreatic endocrinogenesis trajectory in gene expression space based on single-cell data. Our method provides valuable insights into the qualitative, long-term behavior of a wide range of dynamical systems, and can detect bifurcations or catastrophic transitions in large-scale physical and biological systems.

Original languageEnglish
StatePublished - 2024
Event12th International Conference on Learning Representations, ICLR 2024 - Hybrid, Vienna, Austria
Duration: 7 May 202411 May 2024

Conference

Conference12th International Conference on Learning Representations, ICLR 2024
Country/TerritoryAustria
CityHybrid, Vienna
Period7/05/2411/05/24

Bibliographical note

Publisher Copyright:
© 2024 12th International Conference on Learning Representations, ICLR 2024. All rights reserved.

Keywords

  • augmentation
  • bifurcations
  • dynamical systems
  • Hopf bifurcation
  • physics-informed machine learning
  • single-cell RNA-sequencing
  • topological invariance

Fingerprint

Dive into the research topics of 'LET'S DO THE TIME-WARP-ATTEND: LEARNING TOPOLOGICAL INVARIANTS OF DYNAMICAL SYSTEMS'. Together they form a unique fingerprint.

Cite this