TY - JOUR
T1 - Life and death decisions
T2 - Ceramide generation and EGF receptor trafficking are modulated by oxidative stress
AU - Goldkorn, Tzipora
AU - Ravid, Tommer
AU - Khan, Elaine M.
PY - 2005/1
Y1 - 2005/1
N2 - Reactive oxidants are associated with the pathogenesis of pulmonary diseases and affect various cell functions, from proliferation to apoptosis. We have shown that oxidants exert growth control on airway epithelial cells by modulating upstream receptor function. Additionally, hydrogen peroxide-mediated oxidative stress modulates ceramide levels to induce apoptosis in lung epithelium. Depletion of glutathione in lung epithelial cells results in ceramide accumulation, suggesting that ceramide elevation, coupled to oxidative stress, initiates apoptosis. While it is desirable to prevent cell death and tissue injury induced by oxidants in diseases such as asthma or acute respiratory distress syndrome, the opposite is sought in cancer. But oxidants may also activate growth factor receptors, enhancing cell proliferation and facilitating tumor promotion. Under oxidative stress, phosphorylation of the epidermal growth factor receptor (EGFR) is abrogated at tyrosine 1,045, the docking site for the ubiquitin ligase c-Cbl, rendering EGFR unable to recruit c-Cbl and be ubiquitylated and degraded. We thus proposed that this deficiency, which confers prolonged receptor signaling at the plasma membrane, links oxidative stress, EGFR, and tumorigenesis. Decoding the molecular interactions between oxidative stress and ceramide pathways and characterizing ubiquitylation control of receptor desensitization should provide new strategies for intervention in diverse pulmonary diseases and in diagnosing and eradicating cancer.
AB - Reactive oxidants are associated with the pathogenesis of pulmonary diseases and affect various cell functions, from proliferation to apoptosis. We have shown that oxidants exert growth control on airway epithelial cells by modulating upstream receptor function. Additionally, hydrogen peroxide-mediated oxidative stress modulates ceramide levels to induce apoptosis in lung epithelium. Depletion of glutathione in lung epithelial cells results in ceramide accumulation, suggesting that ceramide elevation, coupled to oxidative stress, initiates apoptosis. While it is desirable to prevent cell death and tissue injury induced by oxidants in diseases such as asthma or acute respiratory distress syndrome, the opposite is sought in cancer. But oxidants may also activate growth factor receptors, enhancing cell proliferation and facilitating tumor promotion. Under oxidative stress, phosphorylation of the epidermal growth factor receptor (EGFR) is abrogated at tyrosine 1,045, the docking site for the ubiquitin ligase c-Cbl, rendering EGFR unable to recruit c-Cbl and be ubiquitylated and degraded. We thus proposed that this deficiency, which confers prolonged receptor signaling at the plasma membrane, links oxidative stress, EGFR, and tumorigenesis. Decoding the molecular interactions between oxidative stress and ceramide pathways and characterizing ubiquitylation control of receptor desensitization should provide new strategies for intervention in diverse pulmonary diseases and in diagnosing and eradicating cancer.
UR - http://www.scopus.com/inward/record.url?scp=13244259150&partnerID=8YFLogxK
U2 - 10.1089/ars.2005.7.119
DO - 10.1089/ars.2005.7.119
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.systematicreview???
C2 - 15650401
AN - SCOPUS:13244259150
SN - 1523-0864
VL - 7
SP - 119
EP - 128
JO - Antioxidants and Redox Signaling
JF - Antioxidants and Redox Signaling
IS - 1-2
ER -