TY - JOUR
T1 - Liposomes labeled with biotin and horseradish peroxidase
T2 - A probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes
AU - Alfonta, L.
AU - Singh, A. K.
AU - Willner, I.
PY - 2001/1/1
Y1 - 2001/1/1
N2 - Liposomes labeled with biotin and the enzyme horseradish peroxidase (HRP) are used as a probe to amplify the sensing of antigen-antibody interactions or oligonucleotide-DNA binding. The HRP-biocatalyzed oxidation of 4-chloro-1-naphthol (1) in the presence of H2O2, and the precipitation of the insoluble product 2 on electrode supports, are used as an amplification route for the sensing processes. The anti-dinitrophenyl antibody (DNP-Ab) is sensed by a dinitrophenyl-L-cysteine antigen monolayer associated with an Au electrode. A biotinylated anti-IgG-antibody (Fc-specific) is linked to the antigen-DNP-Ab complex, and the biotin-labeled HRP-liposomes associate with the assembly through an avidin bridge. The biocatalyzed precipitation of 2 on the electrode increases the electron-transfer resistances at the electrode-solution interface or the electrode resistance itself. The binding events of the different proteins on the electrode and the biocatalyzed precipitation of 2 on the conductive support are followed by Faradaic impedance spectroscopy or constant-current chronopotentiometry. DNP-Ab concentrations as low as 1 × 10-11 g·mL-1 can be detected by this method. The labeled liposomes were also used for the amplified detection of DNA 3. The oligonucleotide 4, complementary to a part of the target DNA 3 that is a model nucleic add sequence for the Tay-Sachs genetic disorder, is assembled on an Au electrode. Hybridization of the analyte 3 followed by the association of the biotintagged oligonucleotide 5 yields a three-component double-stranded assembly. Sensing of the analyte 3 is amplified by the association of avidin, the labeled liposomes, and the subsequent biocatalyzed precipitation of 2 on the electrodes. The DNA 3 is detected with a sensitivity that corresponds to 6.5 × 10-13 M. Faradaic impedance spectroscopy and chronopotentiometry were employed to follow the stepwise assembly of the systems and the electronic transduction of the detection of the analyte DNA 3.
AB - Liposomes labeled with biotin and the enzyme horseradish peroxidase (HRP) are used as a probe to amplify the sensing of antigen-antibody interactions or oligonucleotide-DNA binding. The HRP-biocatalyzed oxidation of 4-chloro-1-naphthol (1) in the presence of H2O2, and the precipitation of the insoluble product 2 on electrode supports, are used as an amplification route for the sensing processes. The anti-dinitrophenyl antibody (DNP-Ab) is sensed by a dinitrophenyl-L-cysteine antigen monolayer associated with an Au electrode. A biotinylated anti-IgG-antibody (Fc-specific) is linked to the antigen-DNP-Ab complex, and the biotin-labeled HRP-liposomes associate with the assembly through an avidin bridge. The biocatalyzed precipitation of 2 on the electrode increases the electron-transfer resistances at the electrode-solution interface or the electrode resistance itself. The binding events of the different proteins on the electrode and the biocatalyzed precipitation of 2 on the conductive support are followed by Faradaic impedance spectroscopy or constant-current chronopotentiometry. DNP-Ab concentrations as low as 1 × 10-11 g·mL-1 can be detected by this method. The labeled liposomes were also used for the amplified detection of DNA 3. The oligonucleotide 4, complementary to a part of the target DNA 3 that is a model nucleic add sequence for the Tay-Sachs genetic disorder, is assembled on an Au electrode. Hybridization of the analyte 3 followed by the association of the biotintagged oligonucleotide 5 yields a three-component double-stranded assembly. Sensing of the analyte 3 is amplified by the association of avidin, the labeled liposomes, and the subsequent biocatalyzed precipitation of 2 on the electrodes. The DNA 3 is detected with a sensitivity that corresponds to 6.5 × 10-13 M. Faradaic impedance spectroscopy and chronopotentiometry were employed to follow the stepwise assembly of the systems and the electronic transduction of the detection of the analyte DNA 3.
UR - http://www.scopus.com/inward/record.url?scp=0035170122&partnerID=8YFLogxK
U2 - 10.1021/ac000819v
DO - 10.1021/ac000819v
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 11195517
AN - SCOPUS:0035170122
SN - 0003-2700
VL - 73
SP - 91
EP - 102
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 1
ER -