TY - JOUR
T1 - Local average height distribution of fluctuating interfaces
AU - Smith, Naftali R.
AU - Meerson, Baruch
AU - Sasorov, Pavel V.
N1 - Publisher Copyright:
© 2017 American Physical Society.
PY - 2017/1/20
Y1 - 2017/1/20
N2 - Height fluctuations of growing surfaces can be characterized by the probability distribution of height in a spatial point at a finite time. Recently there has been spectacular progress in the studies of this quantity for the Kardar-Parisi-Zhang (KPZ) equation in 1+1 dimensions. Here we notice that, at or above a critical dimension, the finite-time one-point height distribution is ill defined in a broad class of linear surface growth models unless the model is regularized at small scales. The regularization via a system-dependent small-scale cutoff leads to a partial loss of universality. As a possible alternative, we introduce a local average height. For the linear models, the probability density of this quantity is well defined in any dimension. The weak-noise theory for these models yields the "optimal path" of the interface conditioned on a nonequilibrium fluctuation of the local average height. As an illustration, we consider the conserved Edwards-Wilkinson (EW) equation, where, without regularization, the finite-time one-point height distribution is ill defined in all physical dimensions. We also determine the optimal path of the interface in a closely related problem of the finite-time height-difference distribution for the nonconserved EW equation in 1+1 dimension. Finally, we discuss a UV catastrophe in the finite-time one-point distribution of height in the (nonregularized) KPZ equation in 2+1 dimensions.
AB - Height fluctuations of growing surfaces can be characterized by the probability distribution of height in a spatial point at a finite time. Recently there has been spectacular progress in the studies of this quantity for the Kardar-Parisi-Zhang (KPZ) equation in 1+1 dimensions. Here we notice that, at or above a critical dimension, the finite-time one-point height distribution is ill defined in a broad class of linear surface growth models unless the model is regularized at small scales. The regularization via a system-dependent small-scale cutoff leads to a partial loss of universality. As a possible alternative, we introduce a local average height. For the linear models, the probability density of this quantity is well defined in any dimension. The weak-noise theory for these models yields the "optimal path" of the interface conditioned on a nonequilibrium fluctuation of the local average height. As an illustration, we consider the conserved Edwards-Wilkinson (EW) equation, where, without regularization, the finite-time one-point height distribution is ill defined in all physical dimensions. We also determine the optimal path of the interface in a closely related problem of the finite-time height-difference distribution for the nonconserved EW equation in 1+1 dimension. Finally, we discuss a UV catastrophe in the finite-time one-point distribution of height in the (nonregularized) KPZ equation in 2+1 dimensions.
UR - http://www.scopus.com/inward/record.url?scp=85010297554&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.95.012134
DO - 10.1103/PhysRevE.95.012134
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 28208441
AN - SCOPUS:85010297554
SN - 2470-0045
VL - 95
JO - Physical Review E
JF - Physical Review E
IS - 1
M1 - 012134
ER -