Abstract
We prove an Ω(dlg n/(lg lg n)2) lower bound on the dynamic cell-probe complexity of statistically oblivious approximate-near-neighbor search (ANN) over the ddimensional Hamming cube. For the natural setting of d = Θ(lg n), our result implies an Ω(lg 2 n) lower bound, which is a quadratic improvement over the highest (non-oblivious) cell-probe lower bound for ANN. This is the first super-logarithmic unconditional lower bound for ANN against general (non black-box) data structures. We also show that any oblivious static data structure for decomposable search problems (like ANN) can be obliviously dynamized with O(lg n) overhead in update and query time, strengthening a classic result of Bentley and Saxe (Algorithmica, 1980).
Original language | English |
---|---|
Title of host publication | 31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020 |
Editors | Shuchi Chawla |
Publisher | Association for Computing Machinery |
Pages | 1116-1134 |
Number of pages | 19 |
ISBN (Electronic) | 9781611975994 |
State | Published - 2020 |
Externally published | Yes |
Event | 31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020 - Salt Lake City, United States Duration: 5 Jan 2020 → 8 Jan 2020 |
Publication series
Name | Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms |
---|---|
Volume | 2020-January |
Conference
Conference | 31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020 |
---|---|
Country/Territory | United States |
City | Salt Lake City |
Period | 5/01/20 → 8/01/20 |
Bibliographical note
Publisher Copyright:Copyright © 2020 by SIAM