TY - GEN
T1 - Lower Bounds on Witnesses for Nonemptiness of Universal Co-Büchi Automata
AU - Kupferman, Orna
AU - Piterman, Nir
PY - 2009
Y1 - 2009
N2 - The nonemptiness problem for nondeterministic automata on infinite words can be reduced to a sequence of reachability queries. The length of a shortest witness to the nonemptiness is then polynomial in the automaton. Nonemptiness algorithms for alternating automata translate them to nondeterministic automata. The exponential blow-up that the translation involves is justified by lower bounds for the nonemptiness problem, which is exponentially harder for alternating automata. The translation to nondeterministic automata also entails a blow-up in the length of the shortest witness. A matching lower bound here is known for cases where the translation involves a 2 O(n) blow up, as is the case for finite words or Büchi automata. Alternating co-Büchi automata and witnesses to their nonemptiness have applications in model checking (complementing a nondeterministic Büchi word automaton results in a universal co-Büchi automaton) and synthesis (an LTL specification can be translated to a universal co-Büchi tree automaton accepting exactly all the transducers that realize it). Emptiness algorithms for alternating co-Büchi automata proceed by a translation to nondeterministic Büchi automata. The blow up here is 2 O(n logn), and it follows from the fact that, on top of the subset construction, the nondeterministic automaton maintains ranks to the states of the alternating automaton. It has been conjectured that this super-exponential blow-up need not apply to the length of the shortest witness. Intuitively, since co-Büchi automata are memoryless, it looks like a shortest witness need not visit a state associated with the same set of states more than once. A similar conjecture has been made for the width of a transducer generating a tree accepted by an alternating co-Büchi tree automaton. We show that, unfortunately, this is not the case, and that the super-exponential lower bound on the witness applies already for universal co-Büchi word and tree automata.
AB - The nonemptiness problem for nondeterministic automata on infinite words can be reduced to a sequence of reachability queries. The length of a shortest witness to the nonemptiness is then polynomial in the automaton. Nonemptiness algorithms for alternating automata translate them to nondeterministic automata. The exponential blow-up that the translation involves is justified by lower bounds for the nonemptiness problem, which is exponentially harder for alternating automata. The translation to nondeterministic automata also entails a blow-up in the length of the shortest witness. A matching lower bound here is known for cases where the translation involves a 2 O(n) blow up, as is the case for finite words or Büchi automata. Alternating co-Büchi automata and witnesses to their nonemptiness have applications in model checking (complementing a nondeterministic Büchi word automaton results in a universal co-Büchi automaton) and synthesis (an LTL specification can be translated to a universal co-Büchi tree automaton accepting exactly all the transducers that realize it). Emptiness algorithms for alternating co-Büchi automata proceed by a translation to nondeterministic Büchi automata. The blow up here is 2 O(n logn), and it follows from the fact that, on top of the subset construction, the nondeterministic automaton maintains ranks to the states of the alternating automaton. It has been conjectured that this super-exponential blow-up need not apply to the length of the shortest witness. Intuitively, since co-Büchi automata are memoryless, it looks like a shortest witness need not visit a state associated with the same set of states more than once. A similar conjecture has been made for the width of a transducer generating a tree accepted by an alternating co-Büchi tree automaton. We show that, unfortunately, this is not the case, and that the super-exponential lower bound on the witness applies already for universal co-Büchi word and tree automata.
UR - http://www.scopus.com/inward/record.url?scp=70350647742&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-00596-1_14
DO - 10.1007/978-3-642-00596-1_14
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:70350647742
SN - 3642005950
SN - 9783642005954
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 182
EP - 196
BT - Foundations of Software Science and Computational Structures - 12th International Conference, FOSSACS 2009 - Part of the Joint European Conf. on Theory and Practice of Software, ETAPS 2009, Proc.
T2 - 12th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2009. Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009
Y2 - 22 March 2009 through 29 March 2009
ER -