Abstract
Objective: Non-alcoholic fatty liver disease (NAFLD) involves hepatic accumulation of intracellular lipid droplets via incompletely understood processes. Here, we report distinct and cooperative NAFLD roles of LysTTT-5′tRF transfer RNA fragments and microRNA miR-194-5p. Methods: Combined use of diet induced obese mice with human-derived oleic acid-exposed Hep G2 cells revealed new NAFLD roles of LysTTT-5′tRF and miR-194-5p. Results: Unlike lean animals, dietary-induced NAFLD mice showed concurrent hepatic decrease of both LysTTT-5′tRF and miR-194-5p levels, which were restored following miR-132 antisense oligonucleotide treatment which suppresses hepatic steatosis. Moreover, exposing human-derived Hep G2 cells to oleic acid for 7 days co-suppressed miR-194-5p and LysTTT-5′tRF levels while increasing lipid accumulation. Inversely, transfecting fattened cells with a synthetic LysTTT-5′tRF mimic elevated mRNA levels of the metabolic regulator β-Klotho while decreasing triglyceride amounts by 30% within 24 h. In contradistinction, antisense suppression of miR-194-5p induced accumulation of its novel target, the NAFLD-implicated lipid droplet-coating PLIN2 protein. Further, two out of 15 steatosis-alleviating screened drug-repurposing compounds, Danazol and Latanoprost, elevated miR-194-5p or LysTTT-5′tRF levels. Conclusion: Our findings highlight the different yet complementary roles of miR-194-5p and LysTTT-5′tRF and offer new insights into the complex roles of small non-coding RNAs and the multiple pathways involved in NAFLD pathogenesis.
Original language | English |
---|---|
Article number | 101856 |
Journal | Molecular Metabolism |
Volume | 79 |
DOIs | |
State | Published - Jan 2024 |
Bibliographical note
Publisher Copyright:© 2023 The Author(s)
Keywords
- KLB
- LysTTT-5′tRFs
- NAFLD
- PLIN2
- miR-194-5p
- microRNAs
- tRFs