Abstract
Diffusive motions of the magnetosomes (enveloped Fe3O4 particles) in the magnetotactic bacterium Aquaspirillum magnetotacticum result in a very broad-line Mössbauer spectrum (T approximately 100 mm/s) above freezing temperatures. The line width increases with increasing temperature. The data are analyzed using a bounded diffusion model to yield the rotational and translational motions of the magnetosomes as well as the effective viscosity of the material surrounding the magnetosomes. The results are [theta 2] l/2 less than 1.5 degrees and [x2] 1/2 less than 8.4 A for the rotational and translational motions, respectively, implying that the particles are fixed in whole cells. The effective viscosity is 10 cP at 295 K and increases with decreasing temperature. Additional Fe3+ material in the cell is shown to be associated with the magnetosomes. Fe2+ material in the cell appears to be associated with the cell envelope.
Original language | English |
---|---|
Pages (from-to) | 57-64 |
Number of pages | 8 |
Journal | Biophysical Journal |
Volume | 46 |
Issue number | 1 |
DOIs | |
State | Published - 1984 |