Mass ejection from neutron star mergers: Different components and expected radio signals

Kenta Hotokezaka*, Tsvi Piran

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

111 Scopus citations

Abstract

In addition to producing a strong gravitational signal, a short gamma-ray burst (GRB), and a compact remnant, neutron star mergers eject significant masses (up to a fewper cent of M) at significant kinetic energies. The different components of the ejected mass include a dynamical ejected mass, a GRB jet and also a shock-breakout material, a cocoon resulting from the interaction of the jet with other ejecta, and viscous- and neutrino-driven winds. The interaction of these ejecta with the surrounding interstellarmedium will produce a long-lasting radio flare. We estimate here the expected radio flares arising from these outflows. The flares are rather weak and uncertainties in the kinetic energy, the velocity, and the external density make exact estimates of these signals difficult. The relative strength of the different signals depends strongly on the viewing angle. An observer along the jet axis or close to it will detect a strong signal at a few dozen days from the radio afterglow (or the orphan radio afterglow) produced by the highly relativistic GRB jet. A generic observer at larger viewing angles will generally observe the dynamical ejecta, whose contribution peaks a year or so after the event. Depending on the observed frequency and the external density, other components may also give rise to a significant contribution. If the short GRB 130603B was a merger event, its radio flare from the dynamical ejecta might be detectable with the EVLA and the LOFAR for the higher range of external densities n ≳ 0.5 cm-3.

Original languageEnglish
Pages (from-to)1430-1440
Number of pages11
JournalMonthly Notices of the Royal Astronomical Society
Volume450
Issue number2
DOIs
StatePublished - 10 Apr 2015

Bibliographical note

Publisher Copyright:
© 2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Keywords

  • Gamma-ray burst: general
  • Gravitational waves
  • Stars: neutron

Fingerprint

Dive into the research topics of 'Mass ejection from neutron star mergers: Different components and expected radio signals'. Together they form a unique fingerprint.

Cite this