TY - JOUR
T1 - Mass spectrometry and spectroscopic characterization of a tetrameric photosystem I supercomplex from Leptolyngbya ohadii, a desiccation-tolerant cyanobacterium
AU - Niedzwiedzki, Dariusz M.
AU - Magdaong, Nikki Cecil M.
AU - Su, Xinyang
AU - Adir, Noam
AU - Keren, Nir
AU - Liu, Haijun
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/4/1
Y1 - 2023/4/1
N2 - Cyanobacteria inhabiting desert biological soil crusts face the harsh conditions of the desert. They evolved a suite of strategies toward desiccation-hydration cycles mixed with high light irradiations, etc. In this study we purified and characterized the structure and function of Photosystem I (PSI) from Leptolyngbya ohadii, a desiccation-tolerant desert cyanobacterium. We discovered that PSI forms tetrameric (PSI-Tet) aggregate. We investigated it by using sucrose density gradient centrifugation, clear native PAGE, high performance liquid chromatography, mass spectrometry (MS), time-resolved fluorescence (TRF) and time-resolved transient absorption (TA) spectroscopy. MS analysis identified the presence of two PsaB and two PsaL proteins in PSI-Tet and uniquely revealed that PsaLs are N-terminally acetylated in contrast to non-modified PsaL in the trimeric PSI from Synechocystis sp. PCC 6803. Chlorophyll (Chl) a fluorescence decay profiles of the PSI-Tet performed at 77 K revealed two emission bands at ∼690 nm and 725 nm with the former appearing only at early delay time. The main fluorescence emission peak, associated with emission from the low energy Chls a, decays within a few nanoseconds. TA studies demonstrated that the 725 nm emission band is associated with low energy Chls a with absorption band clearly resolved at ∼710 nm at 77 K. In summary, our work suggests that the heterogenous composition of PsaBs and PsaL in PSI-Tet is related with the adaptation mechanisms needed to cope with stressful conditions under which this bacterium naturally grows.
AB - Cyanobacteria inhabiting desert biological soil crusts face the harsh conditions of the desert. They evolved a suite of strategies toward desiccation-hydration cycles mixed with high light irradiations, etc. In this study we purified and characterized the structure and function of Photosystem I (PSI) from Leptolyngbya ohadii, a desiccation-tolerant desert cyanobacterium. We discovered that PSI forms tetrameric (PSI-Tet) aggregate. We investigated it by using sucrose density gradient centrifugation, clear native PAGE, high performance liquid chromatography, mass spectrometry (MS), time-resolved fluorescence (TRF) and time-resolved transient absorption (TA) spectroscopy. MS analysis identified the presence of two PsaB and two PsaL proteins in PSI-Tet and uniquely revealed that PsaLs are N-terminally acetylated in contrast to non-modified PsaL in the trimeric PSI from Synechocystis sp. PCC 6803. Chlorophyll (Chl) a fluorescence decay profiles of the PSI-Tet performed at 77 K revealed two emission bands at ∼690 nm and 725 nm with the former appearing only at early delay time. The main fluorescence emission peak, associated with emission from the low energy Chls a, decays within a few nanoseconds. TA studies demonstrated that the 725 nm emission band is associated with low energy Chls a with absorption band clearly resolved at ∼710 nm at 77 K. In summary, our work suggests that the heterogenous composition of PsaBs and PsaL in PSI-Tet is related with the adaptation mechanisms needed to cope with stressful conditions under which this bacterium naturally grows.
KW - Acetylation
KW - Leptolyngbya ohadii
KW - Molecular spectroscopy
KW - Photosystem I
KW - PsaL
UR - http://www.scopus.com/inward/record.url?scp=85146853433&partnerID=8YFLogxK
U2 - 10.1016/j.bbabio.2023.148955
DO - 10.1016/j.bbabio.2023.148955
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 36708912
AN - SCOPUS:85146853433
SN - 0005-2728
VL - 1864
JO - Biochimica et Biophysica Acta - Bioenergetics
JF - Biochimica et Biophysica Acta - Bioenergetics
IS - 2
M1 - 148955
ER -