Matrix effect on vibrational frequencies: Experiments and simulations for HCl and HNgCl (Ng = Kr and Xe)

Jaroslaw Kalinowski, R. Benny Gerber, Antti Lignell, Leonid Khriachtchev

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

We study the environmental effect on molecules embedded in noble-gas (Ng) matrices. The experimental data on HXeCl and HKrCl in Ng matrices is enriched. As a result, the H-Xe stretching bands of HXeCl are now known in four Ng matrices (Ne, Ar, Kr, and Xe), and HKrCl is now known in Ar and Kr matrices. The order of the H-Xe stretching frequencies of HXeCl in different matrices is ν(Ne) < ν(Xe) < ν(Kr) < ν(Ar), which is a non-monotonous function of the dielectric constant, in contrast to the "classical" order observed for HCl: ν(Xe) < ν(Kr) < ν(Ar) < ν(Ne). The order of the H-Kr stretching frequencies of HKrCl is consistently ν(Kr) < ν(Ar). These matrix effects are analyzed theoretically by using a number of quantum chemical methods. The calculations on these molecules (HCl, HXeCl, and HKrCl) embedded in single Ng layer cages lead to very satisfactory results with respect to the relative matrix shifts in the case of the MP4(SDQ) method whereas the B3LYP-D and MP2 methods fail to fully reproduce these experimental results. The obtained order of frequencies is discussed in terms of the size available for the Ng hydrides in the cages, probably leading to different stresses on the embedded molecule. Taking into account vibrational anharmonicity produces a good agreement of the MP4(SDQ) frequencies of HCl and HXeCl with the experimental values in different matrices. This work also highlights a number of open questions in the field.

Original languageEnglish
Article number094303
JournalJournal of Chemical Physics
Volume140
Issue number9
DOIs
StatePublished - 7 Mar 2014

Fingerprint

Dive into the research topics of 'Matrix effect on vibrational frequencies: Experiments and simulations for HCl and HNgCl (Ng = Kr and Xe)'. Together they form a unique fingerprint.

Cite this