Max-margin classification of incomplete data

Gal Chechik*, Geremy Heitz, Gal Elidan, Pieter Abbeel, Daphne Koller

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

17 Scopus citations

Abstract

We consider the problem of learning classifiers for structurally incomplete data, where some objects have a subset of features inherently absent due to complex relationships between the features. The common approach for handling missing features is to begin with a preprocessing phase that completes the missing features, and then use a standard classification procedure. In this paper we show how incomplete data can be classified directly without any completion of the missing features using a max-margin learning framework. We formulate this task using a geometrically-inspired objective function, and discuss two optimization approaches: The linearly separable case is written as a set of convex feasibility problems, and the non-separable case has a non-convex objective that we optimize iteratively. By avoiding the pre-processing phase in which the data is completed, these approaches offer considerable computational savings. More importantly, we show that by elegantly handling complex patterns of missing values, our approach is both competitive with other methods when the values are missing at random and outperforms them when the missing values have non-trivial structure. We demonstrate our results on two real-world problems: edge prediction in metabolic pathways, and automobile detection in natural images.

Original languageEnglish
Title of host publicationNIPS 2006
Subtitle of host publicationProceedings of the 19th International Conference on Neural Information Processing Systems
EditorsBernhard Scholkopf, John C. Platt, Thomas Hofmann
PublisherMIT Press Journals
Pages233-240
Number of pages8
ISBN (Electronic)0262195682, 9780262195683
StatePublished - 2006
Externally publishedYes
Event19th International Conference on Neural Information Processing Systems, NIPS 2006 - Vancouver, Canada
Duration: 4 Dec 20067 Dec 2006

Publication series

NameNIPS 2006: Proceedings of the 19th International Conference on Neural Information Processing Systems

Conference

Conference19th International Conference on Neural Information Processing Systems, NIPS 2006
Country/TerritoryCanada
CityVancouver
Period4/12/067/12/06

Bibliographical note

Publisher Copyright:
© NIPS 2006.All rights reserved

Fingerprint

Dive into the research topics of 'Max-margin classification of incomplete data'. Together they form a unique fingerprint.

Cite this