Mechanism design for Single-Value domains

Moshe Babaioff*, Ron Lavi, Elan Pavlov

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

36 Scopus citations

Abstract

In "Single-Value domains", each agent has the same private value for all desired outcomes. We formalize this notion and give new examples for such domains, including a "SAT domain" and a "single-value combinatorial auctions" domain. We study two informational models: where the set of desired outcomes is public information (the "known" case), and where it is private information (the "unknown" case). Under the "known" assumption, we present several truthful approximation mechanisms. Additionally, we suggest a general technique to convert any bitonic approximation algorithm for an unweighted domain (where agent values are either zero or one) to a truthful mechanism, with only a small approximation loss. In contrast, we show that even positive results from the "unknown single minded combinatorial auctions" literature fail to extend to the "unknown" single-value case. We give a characterization of truthfulness in this case, demonstrating that the difference is subtle and surprising.

Original languageEnglish
Pages241-247
Number of pages7
StatePublished - 2005
Event20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05 - Pittsburgh, PA, United States
Duration: 9 Jul 200513 Jul 2005

Conference

Conference20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05
Country/TerritoryUnited States
CityPittsburgh, PA
Period9/07/0513/07/05

Fingerprint

Dive into the research topics of 'Mechanism design for Single-Value domains'. Together they form a unique fingerprint.

Cite this