Abstract
SN2-type halide substitution and hydrolysis are two of the most ubiquitous reactions in chemistry. The interplay between these processes is fundamental in atmospheric chemistry through reactions of N2O5 and seawater. N2O5 plays a major role in regulating levels of O3, OH, NOx, and CH4. While the reactions of N2O5 and seawater are of central importance, little is known about their mechanisms. Of interest is the activation of Cl in seawater by the formation of gaseous ClNO2, which occurs despite the fact that hydrolysis (to HNO3) is energetically more favorable. We determine key features of the reaction landscape that account for this behavior in a theoretical study of the cluster N2O5/Cl−/H2O. This was carried out using ab initio molecular dynamics to determine reaction pathways, structures, and time scales. While hydrolysis of N2O5 occurs in the absence of Cl−, results here reveal that a low-lying pathway featuring halide substitution intermediates enhances hydrolysis.
Original language | English |
---|---|
Article number | aav6503 |
Journal | Science advances |
Volume | 5 |
Issue number | 6 |
DOIs | |
State | Published - 2019 |
Bibliographical note
Publisher Copyright:© 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).