Mechanisms of vegetation-ring formation in water-limited systems

Efrat Sheffer*, Hezi Yizhaq, Moshe Shachak, Ehud Meron

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

54 Scopus citations

Abstract

A common patch form in dryland landscapes is the vegetation ring. Vegetation patch formation has recently been attributed to self-organization processes that act to increase the availability of water to vegetation patches under conditions of water scarcity. The view of ring formation as a water-limited process, however, has remained largely unexplored. Using laboratory experiments and model studies we identify two distinct mechanisms of ring formation. The first mechanism pertains to conditions of high infiltration contrast between vegetated and bare soil, under which overland water flow is intercepted at the patch periphery. The decreasing amount of water that the patch core receives as the patch expands, leads to central dieback and ring formation. The second mechanism pertains to plants with large lateral root zones, and involves central dieback and ring formation due to increasing water uptake by the newly recruited individuals at the patch periphery. In general the two mechanisms act in concert, but the relative importance of each mechanism depends on environmental conditions. We found that strong seasonal rainfall variability favors ring formation by the overland-flow mechanism, while a uniform rainfall regime favors ring formation by the water-uptake mechanism. Our results explain the formation of rings by fast-growing species with confined root zones in a dry-Mediterranean climate, such as Poa bulbosa. They also explain the formation of rings by slowly growing species with highly extended root zones, such as Larrea tridentata (Creosotebush).

Original languageEnglish
Pages (from-to)138-146
Number of pages9
JournalJournal of Theoretical Biology
Volume273
Issue number1
DOIs
StatePublished - 21 Mar 2011
Externally publishedYes

Bibliographical note

Funding Information:
We thank Yael Seligmann, Sonja Rosin, Sol Brand, Adi Balin-Shunami, Noga Zohar, Niv De-Malach, and Hadil Majeed for assistance in the experimental work; Erez Gilad and Assaf Kletter for helpful discussions; and Bertrand Boeken, Sol Brand, Ariel Novoplansky and two anonymous reviewers for reviewing this manuscript. This study was supported by the Israel Science Foundation , Grant no. 780/01 , by the James S. McDonnell Foundation and by the EU-ARI program at the Blaustein Institute for Desert Research.

Keywords

  • Central dieback
  • Mathematical model
  • Pattern formation
  • Poa bulbosa L.
  • Self-organization

Fingerprint

Dive into the research topics of 'Mechanisms of vegetation-ring formation in water-limited systems'. Together they form a unique fingerprint.

Cite this