Abstract
Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo-and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.
Original language | American English |
---|---|
Pages (from-to) | 199-203 |
Number of pages | 5 |
Journal | Nature |
Volume | 505 |
Issue number | 7482 |
DOIs | |
State | Published - 2014 |
Externally published | Yes |