TY - JOUR
T1 - MicroRNA-Guided Selective Release of Loads from Micro-/Nanocarriers Using Auxiliary Constitutional Dynamic Networks
AU - Zhang, Pu
AU - Yue, Liang
AU - Vázquez-González, Margarita
AU - Zhou, Zhixin
AU - Chen, Wei Hai
AU - Sohn, Yang Sung
AU - Nechushtai, Rachel
AU - Willner, Itamar
N1 - Publisher Copyright:
Copyright © 2020 American Chemical Society.
PY - 2020/2/25
Y1 - 2020/2/25
N2 - Two different drug micro-carriers consisting of doxorubicin-dextran (DOX-D)- and camptothecin-modified carboxymethyl cellulose (CPT-CMC)-loaded nucleic acid-stabilized microcapsules, MC-1 and MC-2, or two different nanocarriers consisting of nucleic-acid-locked doxorubicin (DOX)- and camptothecin (CPT)-loaded metal-organic framework nanoparticles, NMOF-1 and NMOF-2, are coupled to auxiliary constitutional dynamic networks, CDNs, for the triggered release of the drugs. CDN "S" composed of four constituents AA′', AB′, BA′, and BB′, and two hairpin structures, H1 and H2, leads to the CDN "S"-guided unlocking of the MC-1/MC-2 carriers and the release of DOX-D and CPT-CMC or of the NMOF-1 and NMOF-2 carriers that release DOX and CPT, respectively. The unlocking processes are activated by the cleavage of H1 and H2 by BB′ and BA′, respectively, to yield fragmented strands that unlock the gating units of the microcapsules/NMOFs carriers. In the presence of miRNA-155 or miRNA-124, dictated orthogonal reconfiguration of CDN "S" into CDN "X" or "Y" proceeds. The miRNA-155 stimulates the reconfiguration of CDN "S" to CDN "X", where AA′ and BB′ are upregulated, and AB′ and BA′ are downregulated, leading to the enhanced release of DOX-D or DOX from the microcapsule/NMOFs carriers, and to the concomitant inhibition of the release of CPT-CMC or CPT from the respective carriers. Similarly, the miRNA-124-triggered reconfiguration of CDN "S" to CDN "Y" results in the BA′-guided cleavage of H2 and the preferred release of CPT-CMC or CPT from the respective carriers. The miRNA-triggered CDN-driven unlocking of the carriers stimulates the amplified and selective release of the drugs from the microcapsules/NMOFs carriers.
AB - Two different drug micro-carriers consisting of doxorubicin-dextran (DOX-D)- and camptothecin-modified carboxymethyl cellulose (CPT-CMC)-loaded nucleic acid-stabilized microcapsules, MC-1 and MC-2, or two different nanocarriers consisting of nucleic-acid-locked doxorubicin (DOX)- and camptothecin (CPT)-loaded metal-organic framework nanoparticles, NMOF-1 and NMOF-2, are coupled to auxiliary constitutional dynamic networks, CDNs, for the triggered release of the drugs. CDN "S" composed of four constituents AA′', AB′, BA′, and BB′, and two hairpin structures, H1 and H2, leads to the CDN "S"-guided unlocking of the MC-1/MC-2 carriers and the release of DOX-D and CPT-CMC or of the NMOF-1 and NMOF-2 carriers that release DOX and CPT, respectively. The unlocking processes are activated by the cleavage of H1 and H2 by BB′ and BA′, respectively, to yield fragmented strands that unlock the gating units of the microcapsules/NMOFs carriers. In the presence of miRNA-155 or miRNA-124, dictated orthogonal reconfiguration of CDN "S" into CDN "X" or "Y" proceeds. The miRNA-155 stimulates the reconfiguration of CDN "S" to CDN "X", where AA′ and BB′ are upregulated, and AB′ and BA′ are downregulated, leading to the enhanced release of DOX-D or DOX from the microcapsule/NMOFs carriers, and to the concomitant inhibition of the release of CPT-CMC or CPT from the respective carriers. Similarly, the miRNA-124-triggered reconfiguration of CDN "S" to CDN "Y" results in the BA′-guided cleavage of H2 and the preferred release of CPT-CMC or CPT from the respective carriers. The miRNA-triggered CDN-driven unlocking of the carriers stimulates the amplified and selective release of the drugs from the microcapsules/NMOFs carriers.
KW - metal-organic framework
KW - miRNA-124
KW - miRNA-155
KW - microcapsule
KW - nanomedicine
KW - nanoparticle
UR - http://www.scopus.com/inward/record.url?scp=85078530596&partnerID=8YFLogxK
U2 - 10.1021/acsnano.9b06047
DO - 10.1021/acsnano.9b06047
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 31927975
AN - SCOPUS:85078530596
SN - 1936-0851
VL - 14
SP - 1482
EP - 1491
JO - ACS Nano
JF - ACS Nano
IS - 2
ER -