Abstract
We consider semi-supervised regression when the predictor variables are drawn from an unknown manifold. A simple two step approach to this problem is to: (i) estimate the manifold geodesic distance between any pair of points using both the labeled and unlabeled instances; and (ii) apply a k nearest neighbor regressor based on these distance estimates. We prove that given sufficiently many unlabeled points, this simple method of geodesic kNN regression achieves the optimal finite-sample minimax bound on the mean squared error, as if the manifold were known. Furthermore, we show how this approach can be efficiently implemented, requiring only O(kN log N) operations to estimate the regression function at all N labeled and unlabeled points. We illustrate this approach on two datasets with a manifold structure: indoor localization using WiFi fingerprints and facial pose estimation. In both cases, geodesic kNN is more accurate and much faster than the popular Laplacian eigenvector regressor.
Original language | English |
---|---|
State | Published - 2017 |
Externally published | Yes |
Event | 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017 - Fort Lauderdale, United States Duration: 20 Apr 2017 → 22 Apr 2017 |
Conference
Conference | 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017 |
---|---|
Country/Territory | United States |
City | Fort Lauderdale |
Period | 20/04/17 → 22/04/17 |
Bibliographical note
Publisher Copyright:Copyright 2017 by the author(s).