Abstract
While many applications of automata in formal methods can use nonde-terministic automata, some applications, most notably synthesis, need deterministic or good-for-games (GFG) automata. The latter are nondeterministic automata that can resolve their nondeterministic choices in a way that only depends on the past. The minimization problem for deterministic Büchi and co-Büchi word automata is NP-complete. In particular, no canonical minimal deterministic automaton exists, and a language may have different minimal deterministic automata. We describe a polynomial minimization algorithm for GFG co-Büchi word automata with transition-based acceptance. Thus, a run is accepting if it traverses a set α of designated transitions only finitely often. Our algorithm is based on a sequence of transformations we apply to the automaton, on top of which a minimal quotient automaton is defined. We use our minimization algorithm to show canonicity for transition-based GFG co-Büchi word automata: all minimal automata have isomorphic safe components (namely components obtained by restricting the transitions to these not in α) and once we saturate the automata with α-transitions, we get full isomorphism.
Original language | English |
---|---|
Pages (from-to) | 16:1-16:33 |
Journal | Logical Methods in Computer Science |
Volume | 18 |
Issue number | 3 |
DOIs | |
State | Published - 2022 |
Bibliographical note
Publisher Copyright:© 2022, B. Abu Radi and O. Kupferman.
Keywords
- Canonization
- Determinisitc Automata on Infinite Words
- Good-For-Games Automata
- Minimization
- co-Büchi acceptance condition